Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783222670> ?p ?o ?g. }
Showing items 1 to 44 of
44
with 100 items per page.
- W2783222670 abstract "In our work, we acquaint a novel methodology to classify information in different datasets. Our strategy depends on K-nearest neighbor (KNN) classification and utilizes Principal Component Analysis (PCA) as information decrease approach, conquering the constraints of conventional KNN characterization on huge information. PCA is utilized to perform information dimensionality decrease while the KNN lazy learner is utilized to perform classification. The execution of the KNN technique, as far as accuracy and classification time, is resolved as a component of the pressure rate accomplished in the PCA preprocessing stage. KNN classifier gives a tremendous change in this specific case, subsequent to as no preparation is required, new items can be included at whatever time. However, KNN lazy learner has high calculation cost depending on number of instances. In order to make KNN lazy learner work possible for any size of dataset, it is important to preprocess the dataset to decrease the number of instances. Here, PCA is applied to reduce the number of transactions which decreases the computation cost and execution time additionally accomplishes close exactness result than without PCA." @default.
- W2783222670 created "2018-01-26" @default.
- W2783222670 creator A5004300659 @default.
- W2783222670 creator A5038129930 @default.
- W2783222670 date "2017-07-01" @default.
- W2783222670 modified "2023-09-26" @default.
- W2783222670 title "Lazy learner and PCA: An evolutionary approach" @default.
- W2783222670 cites W2016080687 @default.
- W2783222670 cites W2035118060 @default.
- W2783222670 cites W2100806228 @default.
- W2783222670 doi "https://doi.org/10.1109/sai.2017.8252120" @default.
- W2783222670 hasPublicationYear "2017" @default.
- W2783222670 type Work @default.
- W2783222670 sameAs 2783222670 @default.
- W2783222670 citedByCount "7" @default.
- W2783222670 countsByYear W27832226702019 @default.
- W2783222670 countsByYear W27832226702020 @default.
- W2783222670 countsByYear W27832226702021 @default.
- W2783222670 countsByYear W27832226702022 @default.
- W2783222670 countsByYear W27832226702023 @default.
- W2783222670 crossrefType "proceedings-article" @default.
- W2783222670 hasAuthorship W2783222670A5004300659 @default.
- W2783222670 hasAuthorship W2783222670A5038129930 @default.
- W2783222670 hasConcept C154945302 @default.
- W2783222670 hasConcept C41008148 @default.
- W2783222670 hasConceptScore W2783222670C154945302 @default.
- W2783222670 hasConceptScore W2783222670C41008148 @default.
- W2783222670 hasLocation W27832226701 @default.
- W2783222670 hasOpenAccess W2783222670 @default.
- W2783222670 hasPrimaryLocation W27832226701 @default.
- W2783222670 hasRelatedWork W2093578348 @default.
- W2783222670 hasRelatedWork W2130043461 @default.
- W2783222670 hasRelatedWork W2350741829 @default.
- W2783222670 hasRelatedWork W2358668433 @default.
- W2783222670 hasRelatedWork W2376932109 @default.
- W2783222670 hasRelatedWork W2382290278 @default.
- W2783222670 hasRelatedWork W2390279801 @default.
- W2783222670 hasRelatedWork W2748952813 @default.
- W2783222670 hasRelatedWork W2899084033 @default.
- W2783222670 hasRelatedWork W3004735627 @default.
- W2783222670 isParatext "false" @default.
- W2783222670 isRetracted "false" @default.
- W2783222670 magId "2783222670" @default.
- W2783222670 workType "article" @default.