Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783223655> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2783223655 abstract "One of the most commonly used ways to monitor execution of software applications is by analyzing logs. Logs are execution foot-print of software applications that are produced and stored for real-time or post-execution analysis of execution. With the software applications becoming large, complex, distributed, web-scale, also called as big data applications, logs produced by such software applications are also large-scale. That means, such logs are large in volume, velocity and variety. That makes it crucial to have such logs analyzed in an automated, scalable and effective manner to ensure high veracity and have analytics with high value. In this paper, we present our proposed solution of a formal model for organizing and structuring logs. We then present a Bayesian deep learning network based analysis approach that utilizes the formal model for logs to detect and predict any possible faults and consequences of such faults. Moreover, we also present our MapReduce based distributed, parallel, single-pass and incremental approach to build, train and execute the proposed Bayesian deep learning framework. This helps in effective processing of logs on cloud platforms and therefore efficient handling of logs that are produced at the scale of big data by big data applications." @default.
- W2783223655 created "2018-01-26" @default.
- W2783223655 creator A5041159348 @default.
- W2783223655 creator A5087753797 @default.
- W2783223655 date "2017-12-01" @default.
- W2783223655 modified "2023-10-14" @default.
- W2783223655 title "Towards MapReduce based Bayesian deep learning network for monitoring big data applications" @default.
- W2783223655 cites W1483135265 @default.
- W2783223655 cites W1489933137 @default.
- W2783223655 cites W1985510377 @default.
- W2783223655 cites W1999428432 @default.
- W2783223655 cites W2026969932 @default.
- W2783223655 cites W2037881245 @default.
- W2783223655 cites W2089758261 @default.
- W2783223655 cites W2098430745 @default.
- W2783223655 cites W2103640577 @default.
- W2783223655 cites W2109722477 @default.
- W2783223655 cites W2110209868 @default.
- W2783223655 cites W2113000065 @default.
- W2783223655 cites W2134882198 @default.
- W2783223655 cites W2135813353 @default.
- W2783223655 cites W2156598245 @default.
- W2783223655 cites W2242385341 @default.
- W2783223655 cites W2401507339 @default.
- W2783223655 cites W2579247884 @default.
- W2783223655 cites W2585882071 @default.
- W2783223655 cites W61255252 @default.
- W2783223655 doi "https://doi.org/10.1109/bigdata.2017.8258159" @default.
- W2783223655 hasPublicationYear "2017" @default.
- W2783223655 type Work @default.
- W2783223655 sameAs 2783223655 @default.
- W2783223655 citedByCount "1" @default.
- W2783223655 countsByYear W27832236552020 @default.
- W2783223655 crossrefType "proceedings-article" @default.
- W2783223655 hasAuthorship W2783223655A5041159348 @default.
- W2783223655 hasAuthorship W2783223655A5087753797 @default.
- W2783223655 hasConcept C108583219 @default.
- W2783223655 hasConcept C111919701 @default.
- W2783223655 hasConcept C119857082 @default.
- W2783223655 hasConcept C120314980 @default.
- W2783223655 hasConcept C124101348 @default.
- W2783223655 hasConcept C154945302 @default.
- W2783223655 hasConcept C2777904410 @default.
- W2783223655 hasConcept C33724603 @default.
- W2783223655 hasConcept C41008148 @default.
- W2783223655 hasConcept C48044578 @default.
- W2783223655 hasConcept C75684735 @default.
- W2783223655 hasConcept C77088390 @default.
- W2783223655 hasConcept C79158427 @default.
- W2783223655 hasConcept C79974875 @default.
- W2783223655 hasConceptScore W2783223655C108583219 @default.
- W2783223655 hasConceptScore W2783223655C111919701 @default.
- W2783223655 hasConceptScore W2783223655C119857082 @default.
- W2783223655 hasConceptScore W2783223655C120314980 @default.
- W2783223655 hasConceptScore W2783223655C124101348 @default.
- W2783223655 hasConceptScore W2783223655C154945302 @default.
- W2783223655 hasConceptScore W2783223655C2777904410 @default.
- W2783223655 hasConceptScore W2783223655C33724603 @default.
- W2783223655 hasConceptScore W2783223655C41008148 @default.
- W2783223655 hasConceptScore W2783223655C48044578 @default.
- W2783223655 hasConceptScore W2783223655C75684735 @default.
- W2783223655 hasConceptScore W2783223655C77088390 @default.
- W2783223655 hasConceptScore W2783223655C79158427 @default.
- W2783223655 hasConceptScore W2783223655C79974875 @default.
- W2783223655 hasLocation W27832236551 @default.
- W2783223655 hasOpenAccess W2783223655 @default.
- W2783223655 hasPrimaryLocation W27832236551 @default.
- W2783223655 hasRelatedWork W1964601812 @default.
- W2783223655 hasRelatedWork W1987299420 @default.
- W2783223655 hasRelatedWork W2187184922 @default.
- W2783223655 hasRelatedWork W2204311365 @default.
- W2783223655 hasRelatedWork W2309970172 @default.
- W2783223655 hasRelatedWork W2497783665 @default.
- W2783223655 hasRelatedWork W2511844115 @default.
- W2783223655 hasRelatedWork W2520013886 @default.
- W2783223655 hasRelatedWork W2529350825 @default.
- W2783223655 hasRelatedWork W2583148087 @default.
- W2783223655 hasRelatedWork W2603006972 @default.
- W2783223655 hasRelatedWork W2786781642 @default.
- W2783223655 hasRelatedWork W2808895360 @default.
- W2783223655 hasRelatedWork W2900588685 @default.
- W2783223655 hasRelatedWork W2922023479 @default.
- W2783223655 hasRelatedWork W2963946443 @default.
- W2783223655 hasRelatedWork W2972843430 @default.
- W2783223655 hasRelatedWork W3093908285 @default.
- W2783223655 hasRelatedWork W3150934481 @default.
- W2783223655 hasRelatedWork W3164045371 @default.
- W2783223655 isParatext "false" @default.
- W2783223655 isRetracted "false" @default.
- W2783223655 magId "2783223655" @default.
- W2783223655 workType "article" @default.