Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783240438> ?p ?o ?g. }
- W2783240438 endingPage "A88" @default.
- W2783240438 startingPage "A88" @default.
- W2783240438 abstract "Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims. The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods. Mixed CH 3 OH:CO/CH 4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results. Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10 −7 CH 3 OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10 −6 CH 3 OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH 3 OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption." @default.
- W2783240438 created "2018-01-26" @default.
- W2783240438 creator A5009751232 @default.
- W2783240438 creator A5014366832 @default.
- W2783240438 creator A5019998411 @default.
- W2783240438 creator A5032229992 @default.
- W2783240438 creator A5082214327 @default.
- W2783240438 creator A5084364464 @default.
- W2783240438 date "2018-04-01" @default.
- W2783240438 modified "2023-10-18" @default.
- W2783240438 title "Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase" @default.
- W2783240438 cites W1530630869 @default.
- W2783240438 cites W1653596356 @default.
- W2783240438 cites W1668932537 @default.
- W2783240438 cites W1756032949 @default.
- W2783240438 cites W1922018070 @default.
- W2783240438 cites W1963536880 @default.
- W2783240438 cites W1964692889 @default.
- W2783240438 cites W1974584521 @default.
- W2783240438 cites W1978781421 @default.
- W2783240438 cites W1995057328 @default.
- W2783240438 cites W2005217267 @default.
- W2783240438 cites W2006521339 @default.
- W2783240438 cites W2013055060 @default.
- W2783240438 cites W2028938532 @default.
- W2783240438 cites W2030385387 @default.
- W2783240438 cites W2033697868 @default.
- W2783240438 cites W2037546322 @default.
- W2783240438 cites W2039296858 @default.
- W2783240438 cites W2039508712 @default.
- W2783240438 cites W2046824146 @default.
- W2783240438 cites W2050815625 @default.
- W2783240438 cites W2053030890 @default.
- W2783240438 cites W2056860212 @default.
- W2783240438 cites W2059465016 @default.
- W2783240438 cites W2060661779 @default.
- W2783240438 cites W2069595624 @default.
- W2783240438 cites W2075819019 @default.
- W2783240438 cites W2081174561 @default.
- W2783240438 cites W2086194148 @default.
- W2783240438 cites W2093568015 @default.
- W2783240438 cites W2096211049 @default.
- W2783240438 cites W2096249383 @default.
- W2783240438 cites W2096268993 @default.
- W2783240438 cites W2098292154 @default.
- W2783240438 cites W2101069453 @default.
- W2783240438 cites W2104741799 @default.
- W2783240438 cites W2110243395 @default.
- W2783240438 cites W2126676599 @default.
- W2783240438 cites W2132319398 @default.
- W2783240438 cites W2147402068 @default.
- W2783240438 cites W2150032215 @default.
- W2783240438 cites W2155223196 @default.
- W2783240438 cites W2166886821 @default.
- W2783240438 cites W2170292914 @default.
- W2783240438 cites W2172893927 @default.
- W2783240438 cites W2223798939 @default.
- W2783240438 cites W2295642117 @default.
- W2783240438 cites W2313521238 @default.
- W2783240438 cites W2315498150 @default.
- W2783240438 cites W2329820724 @default.
- W2783240438 cites W2378167588 @default.
- W2783240438 cites W2395380470 @default.
- W2783240438 cites W2401974163 @default.
- W2783240438 cites W2471102108 @default.
- W2783240438 cites W2516066598 @default.
- W2783240438 cites W2572992421 @default.
- W2783240438 cites W2616498428 @default.
- W2783240438 cites W2734825688 @default.
- W2783240438 cites W2736333000 @default.
- W2783240438 cites W2757609189 @default.
- W2783240438 cites W2951227252 @default.
- W2783240438 cites W3098239546 @default.
- W2783240438 cites W3098489489 @default.
- W2783240438 cites W3099353583 @default.
- W2783240438 cites W3100589966 @default.
- W2783240438 cites W3101854642 @default.
- W2783240438 cites W3102455447 @default.
- W2783240438 cites W3102475862 @default.
- W2783240438 cites W3103326573 @default.
- W2783240438 cites W3103865632 @default.
- W2783240438 cites W3104102744 @default.
- W2783240438 cites W3104757896 @default.
- W2783240438 cites W3104828706 @default.
- W2783240438 cites W3106406396 @default.
- W2783240438 cites W3123760111 @default.
- W2783240438 cites W3124549048 @default.
- W2783240438 cites W4293763433 @default.
- W2783240438 cites W4294573034 @default.
- W2783240438 cites W4299132162 @default.
- W2783240438 doi "https://doi.org/10.1051/0004-6361/201731893" @default.
- W2783240438 hasPublicationYear "2018" @default.
- W2783240438 type Work @default.
- W2783240438 sameAs 2783240438 @default.
- W2783240438 citedByCount "20" @default.
- W2783240438 countsByYear W27832404382018 @default.
- W2783240438 countsByYear W27832404382019 @default.
- W2783240438 countsByYear W27832404382020 @default.