Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783241922> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2783241922 endingPage "221" @default.
- W2783241922 startingPage "209" @default.
- W2783241922 abstract "Technologies for inserting electronic components are necessary within the electronics industry. Previously this was done by manual assembly, but todays customized machines have been specially designed for automatic assembly. A number of these machines even employ robot arms to insert nonconventional components. However, because special-purpose machines are unable to insert transformers with six manually soldered pins onto printed circuit boards, this study proposed a learning system for such machines that incorporates image characteristics into the insertion motions performed by a robot arm to solve problems related to transformer insertion. The proposed system operates in three layers: vision, motion, and decision. The vision layer involves preprocessing image data, extracting pin image features by locally linear embedding (LLE), and setting parameters for teaching insertion motions to the robot arm. In the motion layer, motions qualified for inserting the transformers were collected and the weighted Fuzzy C-means was used to converge the insertion motions and create target markers for the decision layer. The decision layer uses one-against-rest support vector machines (SVMs) to establish classifiers for applying the collected image characteristics to the calculation of insertion motions. Experiments were performed to verify the various research methods by using 300 transformers as training samples and 200 transformers as test samples. By imposing a number of rules to limit image characteristics, this study applied three classifiers (SVMs, Bayes, and a neural network) to the test samples and compared their accuracy. The experimental results indicated an accuracy rate of 88%, an average area under the receiver operating characteristic curves of 0.88, and that the employed SVM classifiers were more accurate than the other two classifiers." @default.
- W2783241922 created "2018-01-26" @default.
- W2783241922 creator A5086104885 @default.
- W2783241922 date "2018-06-01" @default.
- W2783241922 modified "2023-10-03" @default.
- W2783241922 title "Development of an intelligent transformer insertion system using a robot arm" @default.
- W2783241922 cites W1996747841 @default.
- W2783241922 cites W2016958754 @default.
- W2783241922 cites W2034738191 @default.
- W2783241922 cites W2045554378 @default.
- W2783241922 cites W2046192164 @default.
- W2783241922 cites W2059547316 @default.
- W2783241922 cites W2125150158 @default.
- W2783241922 cites W2125387914 @default.
- W2783241922 cites W2154649019 @default.
- W2783241922 cites W2333466052 @default.
- W2783241922 doi "https://doi.org/10.1016/j.rcim.2017.12.002" @default.
- W2783241922 hasPublicationYear "2018" @default.
- W2783241922 type Work @default.
- W2783241922 sameAs 2783241922 @default.
- W2783241922 citedByCount "12" @default.
- W2783241922 countsByYear W27832419222018 @default.
- W2783241922 countsByYear W27832419222020 @default.
- W2783241922 countsByYear W27832419222021 @default.
- W2783241922 countsByYear W27832419222022 @default.
- W2783241922 countsByYear W27832419222023 @default.
- W2783241922 crossrefType "journal-article" @default.
- W2783241922 hasAuthorship W2783241922A5086104885 @default.
- W2783241922 hasConcept C119599485 @default.
- W2783241922 hasConcept C12267149 @default.
- W2783241922 hasConcept C127413603 @default.
- W2783241922 hasConcept C153180895 @default.
- W2783241922 hasConcept C154945302 @default.
- W2783241922 hasConcept C165801399 @default.
- W2783241922 hasConcept C31972630 @default.
- W2783241922 hasConcept C34736171 @default.
- W2783241922 hasConcept C41008148 @default.
- W2783241922 hasConcept C50644808 @default.
- W2783241922 hasConcept C52001869 @default.
- W2783241922 hasConcept C66322947 @default.
- W2783241922 hasConcept C90509273 @default.
- W2783241922 hasConceptScore W2783241922C119599485 @default.
- W2783241922 hasConceptScore W2783241922C12267149 @default.
- W2783241922 hasConceptScore W2783241922C127413603 @default.
- W2783241922 hasConceptScore W2783241922C153180895 @default.
- W2783241922 hasConceptScore W2783241922C154945302 @default.
- W2783241922 hasConceptScore W2783241922C165801399 @default.
- W2783241922 hasConceptScore W2783241922C31972630 @default.
- W2783241922 hasConceptScore W2783241922C34736171 @default.
- W2783241922 hasConceptScore W2783241922C41008148 @default.
- W2783241922 hasConceptScore W2783241922C50644808 @default.
- W2783241922 hasConceptScore W2783241922C52001869 @default.
- W2783241922 hasConceptScore W2783241922C66322947 @default.
- W2783241922 hasConceptScore W2783241922C90509273 @default.
- W2783241922 hasFunder F4320323110 @default.
- W2783241922 hasFunder F4320324051 @default.
- W2783241922 hasLocation W27832419221 @default.
- W2783241922 hasOpenAccess W2783241922 @default.
- W2783241922 hasPrimaryLocation W27832419221 @default.
- W2783241922 hasRelatedWork W2099369243 @default.
- W2783241922 hasRelatedWork W2126100045 @default.
- W2783241922 hasRelatedWork W2136184105 @default.
- W2783241922 hasRelatedWork W3162160273 @default.
- W2783241922 hasRelatedWork W3193301557 @default.
- W2783241922 hasRelatedWork W3214058074 @default.
- W2783241922 hasRelatedWork W4223656335 @default.
- W2783241922 hasRelatedWork W4362499384 @default.
- W2783241922 hasRelatedWork W2187500075 @default.
- W2783241922 hasRelatedWork W2345184372 @default.
- W2783241922 hasVolume "51" @default.
- W2783241922 isParatext "false" @default.
- W2783241922 isRetracted "false" @default.
- W2783241922 magId "2783241922" @default.
- W2783241922 workType "article" @default.