Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783243232> ?p ?o ?g. }
- W2783243232 endingPage "63" @default.
- W2783243232 startingPage "54" @default.
- W2783243232 abstract "Radium isotopes and water-rock interaction were evaluated in an aquifer storage and recovery (ASR) pilot study conducted in 2010–2011 in Minnesota (USA) in order to identify mechanisms governing Ra activities when low-Ra water is recharged into a sandstone aquifer. Groundwater in the aquifer selected for the study, the Cambrian Mt. Simon Sandstone, contains naturally occurring radium that in many areas exceeds United States drinking water standards (185 mBq/L or 5 pCi/L combined 226Ra+228Ra), highlighting the need to identify the rates and mechanisms by which stored water acquires Ra isotopes. Major element concentrations of recovered water largely resembled recharged water, while Ra activities exceeded the Ra activities of the recharged water. 224Ra reached ∼100 mBq/L during the first 8 h of recovery (overall range 15.5–133 mBq/L). 226Ra and 228Ra also increased during the 47-day recovery period (23.7–82.5 mBq/L and 33.7–85.5 mBq/L, respectively). Ra isotope ratios indicate the relative contribution of alpha recoil vs. chemical processes (e.g. adsorption/desorption). During recovery, the 224Ra/228Ra and 228Ra/226Ra ratios declined, approaching their expected limiting values near unity. Collectively, the rates of Ra activity change with time, trends in Ra isotope ratios, barium concentrations, and manganese concentrations suggest that Ra was governed by chemical processes and alpha recoil, in which the half-lives of each Ra isotope determined the primary mechanism(s) controlling radionuclide mobilization from the aquifer solids. Radium-mobilizing processes during storage may include: (1) recharge of low-Ra water into an aquifer containing high-Ra groundwater induced adsorption/desorption disequilibrium and caused net Ra desorption; (2) chemical conditions during storage (e.g. the Ba content of the recharge water or the reducing conditions in the aquifer) could have further released Ra from the aquifer solids or reduced the effectiveness of Ra adsorption; and/or (3) mobilization from radioactive decay of solid-phase thorium parents (alpha recoil) contributed Ra isotopes into the low-Ra recharge water. The short-lived 224Ra was released dominantly by alpha recoil while the longer-lived 226Ra was dominantly released by chemical mechanisms such as desorption. Radium-228, of intermediate half-life, also appears to have been released predominantly by alpha recoil, although significant chemical release of 228Ra cannot be ruled out. Accordingly, at near-neutral pH, groundwater geochemical conditions (such as redox state and/or shifts in Ra activities or Ba concentrations) can influence observed Ra activities in recovered water, which in proportional terms impart the largest effect on the longer-lived 226Ra. Given the roles for both alpha recoil and chemical reactions, the duration of storage could influence radium activities in recovered water from ASR wells." @default.
- W2783243232 created "2018-01-26" @default.
- W2783243232 creator A5004787526 @default.
- W2783243232 creator A5031062938 @default.
- W2783243232 creator A5046445972 @default.
- W2783243232 creator A5048763415 @default.
- W2783243232 date "2018-04-01" @default.
- W2783243232 modified "2023-09-23" @default.
- W2783243232 title "Radium isotope response to aquifer storage and recovery in a sandstone aquifer" @default.
- W2783243232 cites W1887387255 @default.
- W2783243232 cites W1963721275 @default.
- W2783243232 cites W1964182679 @default.
- W2783243232 cites W1968962322 @default.
- W2783243232 cites W1969457030 @default.
- W2783243232 cites W1969780205 @default.
- W2783243232 cites W1971884907 @default.
- W2783243232 cites W1993504438 @default.
- W2783243232 cites W2003587474 @default.
- W2783243232 cites W2022676946 @default.
- W2783243232 cites W2024059186 @default.
- W2783243232 cites W2028239413 @default.
- W2783243232 cites W2029920589 @default.
- W2783243232 cites W2046051408 @default.
- W2783243232 cites W2054661697 @default.
- W2783243232 cites W2057312674 @default.
- W2783243232 cites W2064456638 @default.
- W2783243232 cites W2075632166 @default.
- W2783243232 cites W2082082241 @default.
- W2783243232 cites W2090407255 @default.
- W2783243232 cites W2092208633 @default.
- W2783243232 cites W2098473028 @default.
- W2783243232 cites W2105596067 @default.
- W2783243232 cites W2108558109 @default.
- W2783243232 cites W2120850670 @default.
- W2783243232 cites W2130061352 @default.
- W2783243232 cites W2142043799 @default.
- W2783243232 cites W2159214724 @default.
- W2783243232 cites W2335811480 @default.
- W2783243232 cites W2767740076 @default.
- W2783243232 cites W4234024036 @default.
- W2783243232 cites W4243093920 @default.
- W2783243232 doi "https://doi.org/10.1016/j.apgeochem.2018.01.006" @default.
- W2783243232 hasPublicationYear "2018" @default.
- W2783243232 type Work @default.
- W2783243232 sameAs 2783243232 @default.
- W2783243232 citedByCount "5" @default.
- W2783243232 countsByYear W27832432322018 @default.
- W2783243232 countsByYear W27832432322020 @default.
- W2783243232 countsByYear W27832432322022 @default.
- W2783243232 countsByYear W27832432322023 @default.
- W2783243232 crossrefType "journal-article" @default.
- W2783243232 hasAuthorship W2783243232A5004787526 @default.
- W2783243232 hasAuthorship W2783243232A5031062938 @default.
- W2783243232 hasAuthorship W2783243232A5046445972 @default.
- W2783243232 hasAuthorship W2783243232A5048763415 @default.
- W2783243232 hasConcept C107872376 @default.
- W2783243232 hasConcept C121332964 @default.
- W2783243232 hasConcept C127313418 @default.
- W2783243232 hasConcept C158973077 @default.
- W2783243232 hasConcept C164304813 @default.
- W2783243232 hasConcept C174091901 @default.
- W2783243232 hasConcept C177322064 @default.
- W2783243232 hasConcept C185592680 @default.
- W2783243232 hasConcept C187320778 @default.
- W2783243232 hasConcept C550196577 @default.
- W2783243232 hasConcept C62520636 @default.
- W2783243232 hasConcept C75622301 @default.
- W2783243232 hasConcept C76177295 @default.
- W2783243232 hasConcept C76886044 @default.
- W2783243232 hasConceptScore W2783243232C107872376 @default.
- W2783243232 hasConceptScore W2783243232C121332964 @default.
- W2783243232 hasConceptScore W2783243232C127313418 @default.
- W2783243232 hasConceptScore W2783243232C158973077 @default.
- W2783243232 hasConceptScore W2783243232C164304813 @default.
- W2783243232 hasConceptScore W2783243232C174091901 @default.
- W2783243232 hasConceptScore W2783243232C177322064 @default.
- W2783243232 hasConceptScore W2783243232C185592680 @default.
- W2783243232 hasConceptScore W2783243232C187320778 @default.
- W2783243232 hasConceptScore W2783243232C550196577 @default.
- W2783243232 hasConceptScore W2783243232C62520636 @default.
- W2783243232 hasConceptScore W2783243232C75622301 @default.
- W2783243232 hasConceptScore W2783243232C76177295 @default.
- W2783243232 hasConceptScore W2783243232C76886044 @default.
- W2783243232 hasFunder F4320308166 @default.
- W2783243232 hasLocation W27832432321 @default.
- W2783243232 hasOpenAccess W2783243232 @default.
- W2783243232 hasPrimaryLocation W27832432321 @default.
- W2783243232 hasRelatedWork W2120035461 @default.
- W2783243232 hasRelatedWork W2262138617 @default.
- W2783243232 hasRelatedWork W2265269260 @default.
- W2783243232 hasRelatedWork W2357547782 @default.
- W2783243232 hasRelatedWork W2729881884 @default.
- W2783243232 hasRelatedWork W2775390275 @default.
- W2783243232 hasRelatedWork W2802620913 @default.
- W2783243232 hasRelatedWork W2919913105 @default.
- W2783243232 hasRelatedWork W3083978598 @default.
- W2783243232 hasRelatedWork W3137020286 @default.
- W2783243232 hasVolume "91" @default.