Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783243551> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2783243551 abstract "In this work we explore how the architecture proposed in [8], which expresses the processing steps of the classical Fisher vector pipeline approaches, i.e. dimensionality reduction by principal component analysis (PCA) projection, Gaussian mixture model (GMM) and Fisher vector descriptor extraction as network layers, can be modified into a hybrid network that combines the benefits of both unsupervised and supervised training methods, resulting in a model that learns a semi-supervised Fisher vector descriptor of the input data. We evaluate the proposed model at image classification and action recognition problems and show how the model's classification performance improves as the amount of unlabeled data increases during training." @default.
- W2783243551 created "2018-01-26" @default.
- W2783243551 creator A5031205865 @default.
- W2783243551 creator A5066594047 @default.
- W2783243551 date "2018-01-13" @default.
- W2783243551 modified "2023-09-27" @default.
- W2783243551 title "Semi-supervised Fisher vector network." @default.
- W2783243551 cites W1686810756 @default.
- W2783243551 cites W2049633694 @default.
- W2783243551 cites W2073459066 @default.
- W2783243551 cites W2101234009 @default.
- W2783243551 cites W2146502635 @default.
- W2783243551 cites W2419232606 @default.
- W2783243551 cites W2524365899 @default.
- W2783243551 cites W2567948266 @default.
- W2783243551 cites W2737293151 @default.
- W2783243551 cites W3118608800 @default.
- W2783243551 hasPublicationYear "2018" @default.
- W2783243551 type Work @default.
- W2783243551 sameAs 2783243551 @default.
- W2783243551 citedByCount "0" @default.
- W2783243551 crossrefType "posted-content" @default.
- W2783243551 hasAuthorship W2783243551A5031205865 @default.
- W2783243551 hasAuthorship W2783243551A5066594047 @default.
- W2783243551 hasConcept C11413529 @default.
- W2783243551 hasConcept C119857082 @default.
- W2783243551 hasConcept C153180895 @default.
- W2783243551 hasConcept C154945302 @default.
- W2783243551 hasConcept C181367576 @default.
- W2783243551 hasConcept C199360897 @default.
- W2783243551 hasConcept C207798031 @default.
- W2783243551 hasConcept C27438332 @default.
- W2783243551 hasConcept C31510193 @default.
- W2783243551 hasConcept C41008148 @default.
- W2783243551 hasConcept C43521106 @default.
- W2783243551 hasConcept C57493831 @default.
- W2783243551 hasConcept C61224824 @default.
- W2783243551 hasConcept C70518039 @default.
- W2783243551 hasConceptScore W2783243551C11413529 @default.
- W2783243551 hasConceptScore W2783243551C119857082 @default.
- W2783243551 hasConceptScore W2783243551C153180895 @default.
- W2783243551 hasConceptScore W2783243551C154945302 @default.
- W2783243551 hasConceptScore W2783243551C181367576 @default.
- W2783243551 hasConceptScore W2783243551C199360897 @default.
- W2783243551 hasConceptScore W2783243551C207798031 @default.
- W2783243551 hasConceptScore W2783243551C27438332 @default.
- W2783243551 hasConceptScore W2783243551C31510193 @default.
- W2783243551 hasConceptScore W2783243551C41008148 @default.
- W2783243551 hasConceptScore W2783243551C43521106 @default.
- W2783243551 hasConceptScore W2783243551C57493831 @default.
- W2783243551 hasConceptScore W2783243551C61224824 @default.
- W2783243551 hasConceptScore W2783243551C70518039 @default.
- W2783243551 hasLocation W27832435511 @default.
- W2783243551 hasOpenAccess W2783243551 @default.
- W2783243551 hasPrimaryLocation W27832435511 @default.
- W2783243551 hasRelatedWork W2009257102 @default.
- W2783243551 hasRelatedWork W2042879029 @default.
- W2783243551 hasRelatedWork W2100383301 @default.
- W2783243551 hasRelatedWork W2101664365 @default.
- W2783243551 hasRelatedWork W2103731208 @default.
- W2783243551 hasRelatedWork W2114194474 @default.
- W2783243551 hasRelatedWork W21382975 @default.
- W2783243551 hasRelatedWork W2145833348 @default.
- W2783243551 hasRelatedWork W2355343368 @default.
- W2783243551 hasRelatedWork W2396338919 @default.
- W2783243551 hasRelatedWork W2577311815 @default.
- W2783243551 hasRelatedWork W2626219288 @default.
- W2783243551 hasRelatedWork W2737293151 @default.
- W2783243551 hasRelatedWork W2752448697 @default.
- W2783243551 hasRelatedWork W2800893407 @default.
- W2783243551 hasRelatedWork W3009726326 @default.
- W2783243551 hasRelatedWork W3035463153 @default.
- W2783243551 hasRelatedWork W3088307752 @default.
- W2783243551 hasRelatedWork W801970942 @default.
- W2783243551 hasRelatedWork W3103029270 @default.
- W2783243551 isParatext "false" @default.
- W2783243551 isRetracted "false" @default.
- W2783243551 magId "2783243551" @default.
- W2783243551 workType "article" @default.