Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783258213> ?p ?o ?g. }
- W2783258213 endingPage "675" @default.
- W2783258213 startingPage "666" @default.
- W2783258213 abstract "Thermal infrared (TIR) pedestrian tracking is one of the important components among numerous applications of computer vision, which has a major advantage: it can track pedestrians in total darkness. The ability to evaluate the TIR pedestrian tracker fairly, on a benchmark dataset, is significant for the development of this field. However, there is not a benchmark dataset. In this paper, we develop a TIR pedestrian tracking dataset for the TIR pedestrian tracker evaluation. The dataset includes 60 thermal sequences with manual annotations. Each sequence has nine attribute labels for the attribute based evaluation. In addition to the dataset, we carry out the large-scale evaluation experiments on our benchmark dataset using nine publicly available trackers. The experimental results help us understand the strengths and weaknesses of these trackers.In addition, in order to gain more insight into the TIR pedestrian tracker, we divide its functions into three components: feature extractor, motion model, and observation model. Then, we conduct three comparison experiments on our benchmark dataset to validate how each component affects the tracker's performance. The findings of these experiments provide some guidelines for future research. The dataset and evaluation toolkit can be downloaded at {https://github.com/QiaoLiuHit/PTB-TIR_Evaluation_toolkit}." @default.
- W2783258213 created "2018-01-26" @default.
- W2783258213 creator A5026086568 @default.
- W2783258213 creator A5069054353 @default.
- W2783258213 date "2020-03-01" @default.
- W2783258213 modified "2023-10-17" @default.
- W2783258213 title "PTB-TIR: A Thermal Infrared Pedestrian Tracking Benchmark" @default.
- W2783258213 cites W1997121481 @default.
- W2783258213 cites W1999621311 @default.
- W2783258213 cites W2000326692 @default.
- W2783258213 cites W2003683977 @default.
- W2783258213 cites W2005181468 @default.
- W2783258213 cites W2012402259 @default.
- W2783258213 cites W2015148749 @default.
- W2783258213 cites W2021794943 @default.
- W2783258213 cites W2060745441 @default.
- W2783258213 cites W2071288975 @default.
- W2783258213 cites W2077520767 @default.
- W2783258213 cites W2088187373 @default.
- W2783258213 cites W2089961441 @default.
- W2783258213 cites W2097117768 @default.
- W2783258213 cites W2097290407 @default.
- W2783258213 cites W2115574509 @default.
- W2783258213 cites W2118345389 @default.
- W2783258213 cites W2124386111 @default.
- W2783258213 cites W2133984628 @default.
- W2783258213 cites W2148264622 @default.
- W2783258213 cites W2154889144 @default.
- W2783258213 cites W2156137575 @default.
- W2783258213 cites W2161969291 @default.
- W2783258213 cites W2164598857 @default.
- W2783258213 cites W2167089254 @default.
- W2783258213 cites W2183598498 @default.
- W2783258213 cites W2194775991 @default.
- W2783258213 cites W2220822028 @default.
- W2783258213 cites W2298605637 @default.
- W2783258213 cites W2308101195 @default.
- W2783258213 cites W2343187456 @default.
- W2783258213 cites W2400262625 @default.
- W2783258213 cites W2415234561 @default.
- W2783258213 cites W2473868734 @default.
- W2783258213 cites W2477047852 @default.
- W2783258213 cites W2504776002 @default.
- W2783258213 cites W2522601641 @default.
- W2783258213 cites W2556556019 @default.
- W2783258213 cites W2577056945 @default.
- W2783258213 cites W2607011617 @default.
- W2783258213 cites W2737362155 @default.
- W2783258213 cites W2791052411 @default.
- W2783258213 cites W2802896860 @default.
- W2783258213 cites W2899682933 @default.
- W2783258213 cites W2902767594 @default.
- W2783258213 cites W3102624093 @default.
- W2783258213 cites W783096245 @default.
- W2783258213 doi "https://doi.org/10.1109/tmm.2019.2932615" @default.
- W2783258213 hasPublicationYear "2020" @default.
- W2783258213 type Work @default.
- W2783258213 sameAs 2783258213 @default.
- W2783258213 citedByCount "60" @default.
- W2783258213 countsByYear W27832582132019 @default.
- W2783258213 countsByYear W27832582132020 @default.
- W2783258213 countsByYear W27832582132021 @default.
- W2783258213 countsByYear W27832582132022 @default.
- W2783258213 countsByYear W27832582132023 @default.
- W2783258213 crossrefType "journal-article" @default.
- W2783258213 hasAuthorship W2783258213A5026086568 @default.
- W2783258213 hasAuthorship W2783258213A5069054353 @default.
- W2783258213 hasBestOaLocation W27832582132 @default.
- W2783258213 hasConcept C111472728 @default.
- W2783258213 hasConcept C117978034 @default.
- W2783258213 hasConcept C124101348 @default.
- W2783258213 hasConcept C127413603 @default.
- W2783258213 hasConcept C13280743 @default.
- W2783258213 hasConcept C138885662 @default.
- W2783258213 hasConcept C154945302 @default.
- W2783258213 hasConcept C15744967 @default.
- W2783258213 hasConcept C166957645 @default.
- W2783258213 hasConcept C185798385 @default.
- W2783258213 hasConcept C19417346 @default.
- W2783258213 hasConcept C205649164 @default.
- W2783258213 hasConcept C21880701 @default.
- W2783258213 hasConcept C2775936607 @default.
- W2783258213 hasConcept C2776401178 @default.
- W2783258213 hasConcept C2777113093 @default.
- W2783258213 hasConcept C2780156472 @default.
- W2783258213 hasConcept C31972630 @default.
- W2783258213 hasConcept C41008148 @default.
- W2783258213 hasConcept C41895202 @default.
- W2783258213 hasConcept C56461940 @default.
- W2783258213 hasConcept C57501372 @default.
- W2783258213 hasConcept C63882131 @default.
- W2783258213 hasConceptScore W2783258213C111472728 @default.
- W2783258213 hasConceptScore W2783258213C117978034 @default.
- W2783258213 hasConceptScore W2783258213C124101348 @default.
- W2783258213 hasConceptScore W2783258213C127413603 @default.
- W2783258213 hasConceptScore W2783258213C13280743 @default.
- W2783258213 hasConceptScore W2783258213C138885662 @default.
- W2783258213 hasConceptScore W2783258213C154945302 @default.