Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783267803> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2783267803 endingPage "119" @default.
- W2783267803 startingPage "108" @default.
- W2783267803 abstract "Accurate segmentation of the spine in computed tomography (CT) images is mandatory for quantitative analysis, e.g. in osteoporosis, but remains challenging due to high variability in vertebral morphology and spinal anatomy among patients. Conventionally, spine segmentation was performed by model-based techniques employing spine atlases or statistical shape models. We argue that such approaches, even though intuitive, fail to address clinical abnormalities such as vertebral fractures, scoliosis, etc. We propose a novel deep learning-based method for segmenting the spine, which does not rely on any pre-defined shape model. We employ two networks: one for localisation and another for segmentation. Since a typical spine CT scan cannot be processed at once owing to its large dimensions, we find that both nets are essential to work towards a perfect segmentation. We evaluate our framework on three datasets containing healthy and fractured cases: two private and one public. Our approach achieves a mean Dice coefficient of $${sim }0.87$$ , which is comparable but not higher than the state-of-art model-based approaches. However, we show that our approach handles degenerate cases more accurately." @default.
- W2783267803 created "2018-01-26" @default.
- W2783267803 creator A5002068604 @default.
- W2783267803 creator A5003938965 @default.
- W2783267803 creator A5008521815 @default.
- W2783267803 creator A5028809808 @default.
- W2783267803 creator A5087664142 @default.
- W2783267803 date "2018-01-01" @default.
- W2783267803 modified "2023-09-30" @default.
- W2783267803 title "Attention-Driven Deep Learning for Pathological Spine Segmentation" @default.
- W2783267803 cites W1901129140 @default.
- W2783267803 cites W1950915640 @default.
- W2783267803 cites W1979064019 @default.
- W2783267803 cites W2123414669 @default.
- W2783267803 cites W2149402078 @default.
- W2783267803 cites W2155893237 @default.
- W2783267803 cites W2222318341 @default.
- W2783267803 cites W229983743 @default.
- W2783267803 cites W235843031 @default.
- W2783267803 cites W238806921 @default.
- W2783267803 cites W2395611524 @default.
- W2783267803 cites W2402907716 @default.
- W2783267803 cites W2464708700 @default.
- W2783267803 cites W2962914239 @default.
- W2783267803 doi "https://doi.org/10.1007/978-3-319-74113-0_10" @default.
- W2783267803 hasPublicationYear "2018" @default.
- W2783267803 type Work @default.
- W2783267803 sameAs 2783267803 @default.
- W2783267803 citedByCount "22" @default.
- W2783267803 countsByYear W27832678032018 @default.
- W2783267803 countsByYear W27832678032019 @default.
- W2783267803 countsByYear W27832678032020 @default.
- W2783267803 countsByYear W27832678032021 @default.
- W2783267803 countsByYear W27832678032022 @default.
- W2783267803 countsByYear W27832678032023 @default.
- W2783267803 crossrefType "book-chapter" @default.
- W2783267803 hasAuthorship W2783267803A5002068604 @default.
- W2783267803 hasAuthorship W2783267803A5003938965 @default.
- W2783267803 hasAuthorship W2783267803A5008521815 @default.
- W2783267803 hasAuthorship W2783267803A5028809808 @default.
- W2783267803 hasAuthorship W2783267803A5087664142 @default.
- W2783267803 hasBestOaLocation W27832678032 @default.
- W2783267803 hasConcept C108583219 @default.
- W2783267803 hasConcept C124504099 @default.
- W2783267803 hasConcept C125308379 @default.
- W2783267803 hasConcept C144133560 @default.
- W2783267803 hasConcept C153180895 @default.
- W2783267803 hasConcept C154945302 @default.
- W2783267803 hasConcept C162853370 @default.
- W2783267803 hasConcept C163892561 @default.
- W2783267803 hasConcept C205383261 @default.
- W2783267803 hasConcept C31972630 @default.
- W2783267803 hasConcept C41008148 @default.
- W2783267803 hasConcept C60644358 @default.
- W2783267803 hasConcept C86803240 @default.
- W2783267803 hasConcept C89600930 @default.
- W2783267803 hasConceptScore W2783267803C108583219 @default.
- W2783267803 hasConceptScore W2783267803C124504099 @default.
- W2783267803 hasConceptScore W2783267803C125308379 @default.
- W2783267803 hasConceptScore W2783267803C144133560 @default.
- W2783267803 hasConceptScore W2783267803C153180895 @default.
- W2783267803 hasConceptScore W2783267803C154945302 @default.
- W2783267803 hasConceptScore W2783267803C162853370 @default.
- W2783267803 hasConceptScore W2783267803C163892561 @default.
- W2783267803 hasConceptScore W2783267803C205383261 @default.
- W2783267803 hasConceptScore W2783267803C31972630 @default.
- W2783267803 hasConceptScore W2783267803C41008148 @default.
- W2783267803 hasConceptScore W2783267803C60644358 @default.
- W2783267803 hasConceptScore W2783267803C86803240 @default.
- W2783267803 hasConceptScore W2783267803C89600930 @default.
- W2783267803 hasLocation W27832678031 @default.
- W2783267803 hasLocation W27832678032 @default.
- W2783267803 hasOpenAccess W2783267803 @default.
- W2783267803 hasPrimaryLocation W27832678031 @default.
- W2783267803 hasRelatedWork W1669643531 @default.
- W2783267803 hasRelatedWork W2005437358 @default.
- W2783267803 hasRelatedWork W2008656436 @default.
- W2783267803 hasRelatedWork W2023558673 @default.
- W2783267803 hasRelatedWork W2110230079 @default.
- W2783267803 hasRelatedWork W2134924024 @default.
- W2783267803 hasRelatedWork W2517104666 @default.
- W2783267803 hasRelatedWork W2783267803 @default.
- W2783267803 hasRelatedWork W2790662084 @default.
- W2783267803 hasRelatedWork W4285827401 @default.
- W2783267803 isParatext "false" @default.
- W2783267803 isRetracted "false" @default.
- W2783267803 magId "2783267803" @default.
- W2783267803 workType "book-chapter" @default.