Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783272133> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2783272133 endingPage "32" @default.
- W2783272133 startingPage "22" @default.
- W2783272133 abstract "Emerging availability (and varying complexity and types) of Internet of Things (IoT) devices, along with large data volumes that such devices (can potentially) generate, can have a significant impact on our lives, fuelling the development of critical next-generation services and applications in a variety of application domains (e.g. healthcare, smart grids, finance, disaster management, agriculture, transportation and water management). Deep learning technology, which has in the past been used successfully in computer vision and language modelling is now finding application in new domains driven by availability of diverse and large datasets. One such example is the advances in medical diagnostics and prediction by using Deep Learning technologies to improve human health. However, transferring large data streams (a requirement of Deep Learning technologies for achieving high accuracy) to centralised locations such as Cloud datacentre environments, in a timely and reliable manner, is being seen as a key limitation of expanding the application horizons of such technologies. To this end, various paradigms, including Osmotic Computing, have been proposed that promotes distribution of data analysis tasks across Cloud and Edge computing environments. However, these existing paradigms fail to provide a detailed account of how technologies such as deep learning can be orchestrated and take advantage of the cloud, edge and mobile edge environments in a holistic manner. In other words, the focus of this Blue Skies piece is to analyze the research challenges involved with developing a new class of holistic distributed deep learning algorithms that are “resource and data aware”, and which are able to account for underlying heterogeneous data and data models, resource (cloud vs. edge vs. mobile edge) models and data availability while executing – trading accuracy for execution time, etc." @default.
- W2783272133 created "2018-01-26" @default.
- W2783272133 creator A5020449921 @default.
- W2783272133 creator A5040374733 @default.
- W2783272133 creator A5043216071 @default.
- W2783272133 creator A5071564719 @default.
- W2783272133 creator A5078821851 @default.
- W2783272133 creator A5091261669 @default.
- W2783272133 date "2017-11-01" @default.
- W2783272133 modified "2023-10-16" @default.
- W2783272133 title "Deep Osmosis: Holistic Distributed Deep Learning in Osmotic Computing" @default.
- W2783272133 cites W1966409424 @default.
- W2783272133 cites W2404901863 @default.
- W2783272133 cites W2491785816 @default.
- W2783272133 cites W2513812716 @default.
- W2783272133 cites W2561981131 @default.
- W2783272133 cites W2567333176 @default.
- W2783272133 cites W2584780866 @default.
- W2783272133 cites W2587770880 @default.
- W2783272133 cites W2592929672 @default.
- W2783272133 cites W2597344165 @default.
- W2783272133 cites W2607601895 @default.
- W2783272133 cites W2610332124 @default.
- W2783272133 cites W2919115771 @default.
- W2783272133 cites W2962883027 @default.
- W2783272133 cites W3106445841 @default.
- W2783272133 cites W4235435541 @default.
- W2783272133 doi "https://doi.org/10.1109/mcc.2018.1081070" @default.
- W2783272133 hasPublicationYear "2017" @default.
- W2783272133 type Work @default.
- W2783272133 sameAs 2783272133 @default.
- W2783272133 citedByCount "42" @default.
- W2783272133 countsByYear W27832721332017 @default.
- W2783272133 countsByYear W27832721332018 @default.
- W2783272133 countsByYear W27832721332019 @default.
- W2783272133 countsByYear W27832721332020 @default.
- W2783272133 countsByYear W27832721332021 @default.
- W2783272133 countsByYear W27832721332022 @default.
- W2783272133 countsByYear W27832721332023 @default.
- W2783272133 crossrefType "journal-article" @default.
- W2783272133 hasAuthorship W2783272133A5020449921 @default.
- W2783272133 hasAuthorship W2783272133A5040374733 @default.
- W2783272133 hasAuthorship W2783272133A5043216071 @default.
- W2783272133 hasAuthorship W2783272133A5071564719 @default.
- W2783272133 hasAuthorship W2783272133A5078821851 @default.
- W2783272133 hasAuthorship W2783272133A5091261669 @default.
- W2783272133 hasConcept C108583219 @default.
- W2783272133 hasConcept C111919701 @default.
- W2783272133 hasConcept C120314980 @default.
- W2783272133 hasConcept C124101348 @default.
- W2783272133 hasConcept C136197465 @default.
- W2783272133 hasConcept C154945302 @default.
- W2783272133 hasConcept C2522767166 @default.
- W2783272133 hasConcept C41008148 @default.
- W2783272133 hasConcept C75684735 @default.
- W2783272133 hasConcept C79974875 @default.
- W2783272133 hasConceptScore W2783272133C108583219 @default.
- W2783272133 hasConceptScore W2783272133C111919701 @default.
- W2783272133 hasConceptScore W2783272133C120314980 @default.
- W2783272133 hasConceptScore W2783272133C124101348 @default.
- W2783272133 hasConceptScore W2783272133C136197465 @default.
- W2783272133 hasConceptScore W2783272133C154945302 @default.
- W2783272133 hasConceptScore W2783272133C2522767166 @default.
- W2783272133 hasConceptScore W2783272133C41008148 @default.
- W2783272133 hasConceptScore W2783272133C75684735 @default.
- W2783272133 hasConceptScore W2783272133C79974875 @default.
- W2783272133 hasIssue "6" @default.
- W2783272133 hasLocation W27832721331 @default.
- W2783272133 hasOpenAccess W2783272133 @default.
- W2783272133 hasPrimaryLocation W27832721331 @default.
- W2783272133 hasRelatedWork W2508503355 @default.
- W2783272133 hasRelatedWork W2792245305 @default.
- W2783272133 hasRelatedWork W3014300295 @default.
- W2783272133 hasRelatedWork W3097243301 @default.
- W2783272133 hasRelatedWork W3114771222 @default.
- W2783272133 hasRelatedWork W3183505999 @default.
- W2783272133 hasRelatedWork W4200184607 @default.
- W2783272133 hasRelatedWork W4211081525 @default.
- W2783272133 hasRelatedWork W4287605407 @default.
- W2783272133 hasRelatedWork W3025560445 @default.
- W2783272133 hasVolume "4" @default.
- W2783272133 isParatext "false" @default.
- W2783272133 isRetracted "false" @default.
- W2783272133 magId "2783272133" @default.
- W2783272133 workType "article" @default.