Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783272452> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2783272452 abstract "Metaheuristics that explore the decision variables space to construct probabilistic modeling from promising solutions, like estimation of distribution algorithms (EDAs), are becoming very popular in the context of Multi-objective Evolutionary Algorithms (MOEAs). The probabilistic model used in EDAs captures certain statistics of problem variables and their interdependencies. Moreover, the incorporation of local search methods tends to achieve synergy of MOEAs' operators and local heuristics aiming to improve the performance. In this work, we aim to scrutinize the probabilistic graphic model (PGM) presented in Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm (HMOBEDA), which is based on a Bayesian network. Different from traditional EDA-based approaches, the PGM of HMOBEDA provides the joint probability of decision variables, objectives, and configuration parameters of an embedded local search. HMOBEDA has shown to be very competitive on instances of Multi-Objective Knapsack Problem (MOKP), outperforming state-of-the-art approaches. Two variants of HMOBEDA are proposed in this paper using different sample methods. We aim to compare the learnt structure in terms of the probabilistic Pareto Front approximation produced at the end of evolution. Results on instances of MOKP with 2 to 8 objectives show that both proposed variants outperformthe original approach, providing not only the best values for hypervolume and inverted generational distance indicators, butalso a higher diversity in the solution set." @default.
- W2783272452 created "2018-01-26" @default.
- W2783272452 creator A5005337237 @default.
- W2783272452 creator A5015474670 @default.
- W2783272452 creator A5017509962 @default.
- W2783272452 creator A5034080501 @default.
- W2783272452 creator A5048329604 @default.
- W2783272452 creator A5056772812 @default.
- W2783272452 date "2017-10-01" @default.
- W2783272452 modified "2023-09-26" @default.
- W2783272452 title "Probabilistic Analysis of Pareto Front Approximation for a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm" @default.
- W2783272452 cites W1517993545 @default.
- W2783272452 cites W1569560470 @default.
- W2783272452 cites W1584555100 @default.
- W2783272452 cites W1984576194 @default.
- W2783272452 cites W2013279402 @default.
- W2783272452 cites W2022485595 @default.
- W2783272452 cites W2039447681 @default.
- W2783272452 cites W2052770178 @default.
- W2783272452 cites W2094169082 @default.
- W2783272452 cites W2106334424 @default.
- W2783272452 cites W2115167570 @default.
- W2783272452 cites W2116661285 @default.
- W2783272452 cites W2126105956 @default.
- W2783272452 cites W2127459836 @default.
- W2783272452 cites W2143381319 @default.
- W2783272452 cites W2414365832 @default.
- W2783272452 cites W2506222777 @default.
- W2783272452 cites W4236354166 @default.
- W2783272452 doi "https://doi.org/10.1109/bracis.2017.32" @default.
- W2783272452 hasPublicationYear "2017" @default.
- W2783272452 type Work @default.
- W2783272452 sameAs 2783272452 @default.
- W2783272452 citedByCount "4" @default.
- W2783272452 countsByYear W27832724522018 @default.
- W2783272452 countsByYear W27832724522021 @default.
- W2783272452 crossrefType "proceedings-article" @default.
- W2783272452 hasAuthorship W2783272452A5005337237 @default.
- W2783272452 hasAuthorship W2783272452A5015474670 @default.
- W2783272452 hasAuthorship W2783272452A5017509962 @default.
- W2783272452 hasAuthorship W2783272452A5034080501 @default.
- W2783272452 hasAuthorship W2783272452A5048329604 @default.
- W2783272452 hasAuthorship W2783272452A5056772812 @default.
- W2783272452 hasConcept C105795698 @default.
- W2783272452 hasConcept C107673813 @default.
- W2783272452 hasConcept C11413529 @default.
- W2783272452 hasConcept C126255220 @default.
- W2783272452 hasConcept C137635306 @default.
- W2783272452 hasConcept C154945302 @default.
- W2783272452 hasConcept C162500139 @default.
- W2783272452 hasConcept C18249693 @default.
- W2783272452 hasConcept C190373308 @default.
- W2783272452 hasConcept C24404364 @default.
- W2783272452 hasConcept C33923547 @default.
- W2783272452 hasConcept C41008148 @default.
- W2783272452 hasConcept C49937458 @default.
- W2783272452 hasConceptScore W2783272452C105795698 @default.
- W2783272452 hasConceptScore W2783272452C107673813 @default.
- W2783272452 hasConceptScore W2783272452C11413529 @default.
- W2783272452 hasConceptScore W2783272452C126255220 @default.
- W2783272452 hasConceptScore W2783272452C137635306 @default.
- W2783272452 hasConceptScore W2783272452C154945302 @default.
- W2783272452 hasConceptScore W2783272452C162500139 @default.
- W2783272452 hasConceptScore W2783272452C18249693 @default.
- W2783272452 hasConceptScore W2783272452C190373308 @default.
- W2783272452 hasConceptScore W2783272452C24404364 @default.
- W2783272452 hasConceptScore W2783272452C33923547 @default.
- W2783272452 hasConceptScore W2783272452C41008148 @default.
- W2783272452 hasConceptScore W2783272452C49937458 @default.
- W2783272452 hasLocation W27832724521 @default.
- W2783272452 hasOpenAccess W2783272452 @default.
- W2783272452 hasPrimaryLocation W27832724521 @default.
- W2783272452 hasRelatedWork W2005148544 @default.
- W2783272452 hasRelatedWork W2029250410 @default.
- W2783272452 hasRelatedWork W2061729843 @default.
- W2783272452 hasRelatedWork W2081820175 @default.
- W2783272452 hasRelatedWork W2108334763 @default.
- W2783272452 hasRelatedWork W2123147238 @default.
- W2783272452 hasRelatedWork W2811284655 @default.
- W2783272452 hasRelatedWork W2963672931 @default.
- W2783272452 hasRelatedWork W4302419178 @default.
- W2783272452 hasRelatedWork W2141079800 @default.
- W2783272452 isParatext "false" @default.
- W2783272452 isRetracted "false" @default.
- W2783272452 magId "2783272452" @default.
- W2783272452 workType "article" @default.