Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783273259> ?p ?o ?g. }
- W2783273259 endingPage "1549" @default.
- W2783273259 startingPage "1534" @default.
- W2783273259 abstract "One of the much debated mysteries in 1H NMR relaxation measurements of bitumen and heavy crude oils is the departure from expected theoretical trends at high viscosities, where traditional theories of 1H–1H dipole–dipole interactions predict an increase in T1 with increasing viscosity. However, previous experiments on bitumen and heavy crude oils clearly show that T1LM (i.e., log-mean of the T1 distribution) becomes independent of viscosity at high viscosities; in other words, T1LM versus viscosity approaches a plateau. We report 1H NMR data at ambient conditions on a set of pure polymers and polymer–heptane mixes spanning a wide range of viscosities (η = 0.39 cP ↔ 334 000 cP) and NMR frequencies (ω0/2π = f0 = 2.3 MHz ↔ 400 MHz) and find that at high viscosities (i.e., in the slow-motion regime) T1LM plateaus to a value T1LM> ∝ ω0 independent of viscosity, similar to bitumen. More specifically, on a frequency-normalized scale, we find that T1LM> × 2.3/f0 ≃ 3 ms (i.e., normalized relative to 2.3 MHz), in good agreement with bitumen and previously reported polymers. Our findings suggest that in the high-viscosity limit T1LM> and T2LM> for polymers, bitumen, and heavy crude oils can be explained by 1H–1H dipole–dipole interactions without the need to invoke surface paramagnetism. In light of this, we propose a new relaxation model to account for the viscosity and frequency dependences of T1LM and T2LM, solely based on 1H–1H dipole–dipole interactions. We also determine the surface relaxation components T1S and T2S of heptane in the polymer–heptane mixes, where the polymer acts as the “surface” for heptane. We report ratios up to T1S/T2S ≃ 4 and dispersion T1S(ω0) for heptane in the mix, similar to previously reported data for hydrocarbons confined in organic matter such as bitumen and kerogen. These findings imply that 1H–1H dipole–dipole interactions enhanced by nanopore confinement dominate T1S and T2S relaxation in saturated organic-rich shales." @default.
- W2783273259 created "2018-01-26" @default.
- W2783273259 creator A5009524669 @default.
- W2783273259 creator A5024324587 @default.
- W2783273259 creator A5066447712 @default.
- W2783273259 creator A5080459783 @default.
- W2783273259 creator A5083261287 @default.
- W2783273259 creator A5084292958 @default.
- W2783273259 creator A5086003163 @default.
- W2783273259 date "2018-01-22" @default.
- W2783273259 modified "2023-09-26" @default.
- W2783273259 title "Interpretation of NMR Relaxation in Bitumen and Organic Shale Using Polymer–Heptane Mixes" @default.
- W2783273259 cites W1602296535 @default.
- W2783273259 cites W1630553904 @default.
- W2783273259 cites W177643106 @default.
- W2783273259 cites W1913174536 @default.
- W2783273259 cites W1964860442 @default.
- W2783273259 cites W1972872247 @default.
- W2783273259 cites W1972980611 @default.
- W2783273259 cites W1977551235 @default.
- W2783273259 cites W1981937875 @default.
- W2783273259 cites W1984214011 @default.
- W2783273259 cites W1985031591 @default.
- W2783273259 cites W1989879967 @default.
- W2783273259 cites W1990527833 @default.
- W2783273259 cites W1994906261 @default.
- W2783273259 cites W1996464094 @default.
- W2783273259 cites W1997168385 @default.
- W2783273259 cites W1998602837 @default.
- W2783273259 cites W2001648405 @default.
- W2783273259 cites W2002796335 @default.
- W2783273259 cites W2004629469 @default.
- W2783273259 cites W2004712789 @default.
- W2783273259 cites W2011076435 @default.
- W2783273259 cites W2012970078 @default.
- W2783273259 cites W2013791450 @default.
- W2783273259 cites W2018965851 @default.
- W2783273259 cites W2020661870 @default.
- W2783273259 cites W2021176258 @default.
- W2783273259 cites W2021244193 @default.
- W2783273259 cites W2023323214 @default.
- W2783273259 cites W2023776256 @default.
- W2783273259 cites W2025717854 @default.
- W2783273259 cites W2027038263 @default.
- W2783273259 cites W2027842886 @default.
- W2783273259 cites W2029340661 @default.
- W2783273259 cites W2035074851 @default.
- W2783273259 cites W2039460245 @default.
- W2783273259 cites W2045642896 @default.
- W2783273259 cites W2046004683 @default.
- W2783273259 cites W2048428745 @default.
- W2783273259 cites W2053590485 @default.
- W2783273259 cites W2055857218 @default.
- W2783273259 cites W2056236589 @default.
- W2783273259 cites W2057282358 @default.
- W2783273259 cites W2063781349 @default.
- W2783273259 cites W2065591719 @default.
- W2783273259 cites W2066999227 @default.
- W2783273259 cites W2072942904 @default.
- W2783273259 cites W2079161982 @default.
- W2783273259 cites W2079879610 @default.
- W2783273259 cites W2083711541 @default.
- W2783273259 cites W2089484397 @default.
- W2783273259 cites W2089485022 @default.
- W2783273259 cites W2102888127 @default.
- W2783273259 cites W2129139522 @default.
- W2783273259 cites W2131904845 @default.
- W2783273259 cites W2135638778 @default.
- W2783273259 cites W2314424924 @default.
- W2783273259 cites W2314787606 @default.
- W2783273259 cites W2317236727 @default.
- W2783273259 cites W2317762696 @default.
- W2783273259 cites W2318159139 @default.
- W2783273259 cites W2320010096 @default.
- W2783273259 cites W2326122213 @default.
- W2783273259 cites W2326709884 @default.
- W2783273259 cites W2327705250 @default.
- W2783273259 cites W2505629202 @default.
- W2783273259 cites W2508973155 @default.
- W2783273259 cites W2511958615 @default.
- W2783273259 cites W2523412886 @default.
- W2783273259 cites W2564154858 @default.
- W2783273259 cites W2592240035 @default.
- W2783273259 cites W2593282273 @default.
- W2783273259 cites W2611195026 @default.
- W2783273259 cites W2767268142 @default.
- W2783273259 cites W991480973 @default.
- W2783273259 doi "https://doi.org/10.1021/acs.energyfuels.7b03603" @default.
- W2783273259 hasPublicationYear "2018" @default.
- W2783273259 type Work @default.
- W2783273259 sameAs 2783273259 @default.
- W2783273259 citedByCount "19" @default.
- W2783273259 countsByYear W27832732592018 @default.
- W2783273259 countsByYear W27832732592019 @default.
- W2783273259 countsByYear W27832732592020 @default.
- W2783273259 countsByYear W27832732592021 @default.
- W2783273259 countsByYear W27832732592022 @default.
- W2783273259 countsByYear W27832732592023 @default.