Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783275182> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2783275182 endingPage "18" @default.
- W2783275182 startingPage "13" @default.
- W2783275182 abstract "Deaf people use their own national sign or finger languages for communication. They have a lot of inconvenience in both social and financial problems. In this study, a finger language recognition system using an ensemble machine learning algorithm with an armband sensor of 8 channel surface electromyography (sEMG) is introduced. The algorithm consisted of signal acquisition, digital filtering, feature vector extraction, and an ensemble classifier based on artificial neural network (EANN). It was evaluated with Korean finger language (14 consonants, 17 vowels and 7 numbers) in 20 normal subjects. EANN was categorized with the number of classifiers (1 to 10) and the size of training data (50 to 1500). Mean accuracies and standard deviations for each structure were then obtained. Results showed that, as the number of classifiers (1 to 8) and the size of training data (50 to 300) were increased, the average accuracy of the E-ANN classifier was increased while the standard deviation was decreased. Statistical analysis showed that the optimal E-ANN structure was composed with 8 classifiers and 300 training data. This study suggested that E-ANN was more accurate than the general ANN for sign/finger language recognition." @default.
- W2783275182 created "2018-01-26" @default.
- W2783275182 creator A5016089394 @default.
- W2783275182 creator A5047504790 @default.
- W2783275182 creator A5048546718 @default.
- W2783275182 creator A5060531360 @default.
- W2783275182 creator A5083931378 @default.
- W2783275182 date "2018-01-01" @default.
- W2783275182 modified "2023-09-25" @default.
- W2783275182 title "An Armband-Type Finger Language Recognition System Based on Ensemble Artificial Neural Network" @default.
- W2783275182 doi "https://doi.org/10.7736/kspe.2018.35.1.13" @default.
- W2783275182 hasPublicationYear "2018" @default.
- W2783275182 type Work @default.
- W2783275182 sameAs 2783275182 @default.
- W2783275182 citedByCount "1" @default.
- W2783275182 countsByYear W27832751822019 @default.
- W2783275182 crossrefType "journal-article" @default.
- W2783275182 hasAuthorship W2783275182A5016089394 @default.
- W2783275182 hasAuthorship W2783275182A5047504790 @default.
- W2783275182 hasAuthorship W2783275182A5048546718 @default.
- W2783275182 hasAuthorship W2783275182A5060531360 @default.
- W2783275182 hasAuthorship W2783275182A5083931378 @default.
- W2783275182 hasConcept C105795698 @default.
- W2783275182 hasConcept C12267149 @default.
- W2783275182 hasConcept C153180895 @default.
- W2783275182 hasConcept C154945302 @default.
- W2783275182 hasConcept C22679943 @default.
- W2783275182 hasConcept C28490314 @default.
- W2783275182 hasConcept C33923547 @default.
- W2783275182 hasConcept C41008148 @default.
- W2783275182 hasConcept C50644808 @default.
- W2783275182 hasConcept C52622490 @default.
- W2783275182 hasConcept C95623464 @default.
- W2783275182 hasConceptScore W2783275182C105795698 @default.
- W2783275182 hasConceptScore W2783275182C12267149 @default.
- W2783275182 hasConceptScore W2783275182C153180895 @default.
- W2783275182 hasConceptScore W2783275182C154945302 @default.
- W2783275182 hasConceptScore W2783275182C22679943 @default.
- W2783275182 hasConceptScore W2783275182C28490314 @default.
- W2783275182 hasConceptScore W2783275182C33923547 @default.
- W2783275182 hasConceptScore W2783275182C41008148 @default.
- W2783275182 hasConceptScore W2783275182C50644808 @default.
- W2783275182 hasConceptScore W2783275182C52622490 @default.
- W2783275182 hasConceptScore W2783275182C95623464 @default.
- W2783275182 hasFunder F4320322120 @default.
- W2783275182 hasIssue "1" @default.
- W2783275182 hasLocation W27832751821 @default.
- W2783275182 hasOpenAccess W2783275182 @default.
- W2783275182 hasPrimaryLocation W27832751821 @default.
- W2783275182 hasRelatedWork W2041636156 @default.
- W2783275182 hasRelatedWork W2120008580 @default.
- W2783275182 hasRelatedWork W2126100045 @default.
- W2783275182 hasRelatedWork W2160451891 @default.
- W2783275182 hasRelatedWork W2336974148 @default.
- W2783275182 hasRelatedWork W2381773606 @default.
- W2783275182 hasRelatedWork W2985348705 @default.
- W2783275182 hasRelatedWork W4225360039 @default.
- W2783275182 hasRelatedWork W2187500075 @default.
- W2783275182 hasRelatedWork W2345184372 @default.
- W2783275182 hasVolume "35" @default.
- W2783275182 isParatext "false" @default.
- W2783275182 isRetracted "false" @default.
- W2783275182 magId "2783275182" @default.
- W2783275182 workType "article" @default.