Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783276372> ?p ?o ?g. }
- W2783276372 endingPage "268" @default.
- W2783276372 startingPage "256" @default.
- W2783276372 abstract "The redox state and speciation of the metalloid arsenic (As) determine its toxicity and mobility. Knowledge of biogeochemical processes influencing the As redox state is therefore important to understand and predict its environmental behavior. Many previous studies examined As(III) oxidation by various Mn-oxides, but little is known concerning environmental influences (e.g., coexisting ions) on the process. In this study, we investigated the mechanisms of As(III) oxidation by a poorly crystalline hexagonal birnessite (δ-MnO2) in the presence of dissolved Fe(II) using X-ray absorption spectroscopy, Mössbauer spectroscopy, and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS). The As K-edge X-ray absorption near edge spectroscopy (XANES) analysis revealed that, at low Fe(II) concentration (100 μM), As(V) was the predominant As species on the solid phase, whereas at higher Fe(II) concentrations (200–1000 μM), both As(III) and As(V) were sorbed on the solid phase. As K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) analysis showed an increasing As–Mn/Fe distance over time, indicating As prefers to bind with the newly formed Fe(III)-(hydr)oxides. Both As(III) and (V) adsorbed on Fe(III)-(hydr)oxides as a bidentate binuclear corner-sharing complex. Both Mössbauer and TEM-EDS investigations demonstrated that oxidized Fe(III) products formed during Fe(II) oxidation by δ-MnO2 were predominantly ferrihydrite-, goethite-, and ferric arsenate-like compounds. However, Fe EXAFS analysis also suggested the formation of a small amount of lepidocrocite. The Mn K-edge XANES data indicated that As(III) oxidation occurs as a two electron transfer with δ-MnO2 and that the observed Mn(III) is due to conproportionation of surface-sorbed Mn(II) with Mn(IV) in the δ-MnO2 structure. This study reveals that the mechanisms of As(III) oxidation by δ-MnO2 in the presence of Fe(II) are very complex, involving many simultaneous reactions, and the formation of Fe(III)-(hydr)oxides plays a very important role in reducing As mobility." @default.
- W2783276372 created "2018-01-26" @default.
- W2783276372 creator A5000432967 @default.
- W2783276372 creator A5037434079 @default.
- W2783276372 creator A5047017018 @default.
- W2783276372 creator A5070604762 @default.
- W2783276372 creator A5074779671 @default.
- W2783276372 creator A5080494895 @default.
- W2783276372 date "2018-01-17" @default.
- W2783276372 modified "2023-10-16" @default.
- W2783276372 title "Iron and Arsenic Speciation During As(III) Oxidation by Manganese Oxides in the Presence of Fe(II): Molecular-Level Characterization Using XAFS, Mössbauer, and TEM Analysis" @default.
- W2783276372 cites W1170235028 @default.
- W2783276372 cites W1586092561 @default.
- W2783276372 cites W1777939053 @default.
- W2783276372 cites W1885892400 @default.
- W2783276372 cites W1935610446 @default.
- W2783276372 cites W1966325683 @default.
- W2783276372 cites W1968802623 @default.
- W2783276372 cites W1978292063 @default.
- W2783276372 cites W1978450379 @default.
- W2783276372 cites W1978895830 @default.
- W2783276372 cites W1981526567 @default.
- W2783276372 cites W1988229392 @default.
- W2783276372 cites W1988868414 @default.
- W2783276372 cites W1993596116 @default.
- W2783276372 cites W1998592288 @default.
- W2783276372 cites W2008266045 @default.
- W2783276372 cites W2008396545 @default.
- W2783276372 cites W2011020318 @default.
- W2783276372 cites W2015145621 @default.
- W2783276372 cites W2016052793 @default.
- W2783276372 cites W2016527149 @default.
- W2783276372 cites W2017233349 @default.
- W2783276372 cites W2026104013 @default.
- W2783276372 cites W2033792935 @default.
- W2783276372 cites W2033872226 @default.
- W2783276372 cites W2047399051 @default.
- W2783276372 cites W2057544040 @default.
- W2783276372 cites W2058108522 @default.
- W2783276372 cites W2059926907 @default.
- W2783276372 cites W2071242536 @default.
- W2783276372 cites W2073514305 @default.
- W2783276372 cites W2077688484 @default.
- W2783276372 cites W2077753024 @default.
- W2783276372 cites W2079092072 @default.
- W2783276372 cites W2079822630 @default.
- W2783276372 cites W2080521794 @default.
- W2783276372 cites W2080976832 @default.
- W2783276372 cites W2081684175 @default.
- W2783276372 cites W2081756067 @default.
- W2783276372 cites W2085289292 @default.
- W2783276372 cites W2093685176 @default.
- W2783276372 cites W2119492070 @default.
- W2783276372 cites W2125266999 @default.
- W2783276372 cites W2127822086 @default.
- W2783276372 cites W2144950249 @default.
- W2783276372 cites W2163366584 @default.
- W2783276372 cites W2163458761 @default.
- W2783276372 cites W2164797855 @default.
- W2783276372 cites W2168154832 @default.
- W2783276372 cites W2169125845 @default.
- W2783276372 cites W2316604502 @default.
- W2783276372 cites W2320106949 @default.
- W2783276372 cites W2330680230 @default.
- W2783276372 cites W2331482145 @default.
- W2783276372 cites W2342033739 @default.
- W2783276372 cites W2482515241 @default.
- W2783276372 cites W4255412919 @default.
- W2783276372 cites W628024575 @default.
- W2783276372 cites W842057979 @default.
- W2783276372 doi "https://doi.org/10.1021/acsearthspacechem.7b00119" @default.
- W2783276372 hasPublicationYear "2018" @default.
- W2783276372 type Work @default.
- W2783276372 sameAs 2783276372 @default.
- W2783276372 citedByCount "26" @default.
- W2783276372 countsByYear W27832763722018 @default.
- W2783276372 countsByYear W27832763722019 @default.
- W2783276372 countsByYear W27832763722020 @default.
- W2783276372 countsByYear W27832763722021 @default.
- W2783276372 countsByYear W27832763722022 @default.
- W2783276372 countsByYear W27832763722023 @default.
- W2783276372 crossrefType "journal-article" @default.
- W2783276372 hasAuthorship W2783276372A5000432967 @default.
- W2783276372 hasAuthorship W2783276372A5037434079 @default.
- W2783276372 hasAuthorship W2783276372A5047017018 @default.
- W2783276372 hasAuthorship W2783276372A5070604762 @default.
- W2783276372 hasAuthorship W2783276372A5074779671 @default.
- W2783276372 hasAuthorship W2783276372A5080494895 @default.
- W2783276372 hasBestOaLocation W27832763722 @default.
- W2783276372 hasConcept C107861141 @default.
- W2783276372 hasConcept C110715899 @default.
- W2783276372 hasConcept C119824511 @default.
- W2783276372 hasConcept C121332964 @default.
- W2783276372 hasConcept C147789679 @default.
- W2783276372 hasConcept C150244406 @default.
- W2783276372 hasConcept C150394285 @default.
- W2783276372 hasConcept C178790620 @default.
- W2783276372 hasConcept C179104552 @default.