Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783285849> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2783285849 endingPage "110" @default.
- W2783285849 startingPage "110" @default.
- W2783285849 abstract "An important problem in graph theory is that of determining the maximum number of edges in a given graph $G$ that contains no specific subgraphs. This problem has attracted the attention of many researchers. An example of such a problem is the determination of an upper bound on the number of edges of a graph that has no triangles. In this paper, we let $mathcal{G}(n,V_{r,3})$ denote the class of graphs on $n$ vertices containing no $r$-vertex-disjoint cycles of length $3$. We show that for large $n$, $mathcal{E}(G)les lfloor frac{(n-r+1)^2}{4} rfloor +(r-1)(n-r+1)$ for every $Ginmathcal{G}(n,V_{r,3})$. Furthermore, equality holds if and only if $G=Omega(n,r)=K_{r-1,lfloor frac{n-r+1}2rfloor,lceil frac{n-r+1}2rceil}$ where $Omega(n,r)$ is a tripartite graph on $n$ vertices." @default.
- W2783285849 created "2018-01-26" @default.
- W2783285849 creator A5046487770 @default.
- W2783285849 date "2017-11-13" @default.
- W2783285849 modified "2023-09-26" @default.
- W2783285849 title "Edge-Maximal Graphs Containing No $r$ Vertex-Disjoint Triangles" @default.
- W2783285849 doi "https://doi.org/10.5539/jmr.v10n1p110" @default.
- W2783285849 hasPublicationYear "2017" @default.
- W2783285849 type Work @default.
- W2783285849 sameAs 2783285849 @default.
- W2783285849 citedByCount "1" @default.
- W2783285849 countsByYear W27832858492018 @default.
- W2783285849 crossrefType "journal-article" @default.
- W2783285849 hasAuthorship W2783285849A5046487770 @default.
- W2783285849 hasBestOaLocation W27832858491 @default.
- W2783285849 hasConcept C114614502 @default.
- W2783285849 hasConcept C118615104 @default.
- W2783285849 hasConcept C121332964 @default.
- W2783285849 hasConcept C132525143 @default.
- W2783285849 hasConcept C134306372 @default.
- W2783285849 hasConcept C2779557605 @default.
- W2783285849 hasConcept C33923547 @default.
- W2783285849 hasConcept C45340560 @default.
- W2783285849 hasConcept C62520636 @default.
- W2783285849 hasConcept C77553402 @default.
- W2783285849 hasConcept C80899671 @default.
- W2783285849 hasConceptScore W2783285849C114614502 @default.
- W2783285849 hasConceptScore W2783285849C118615104 @default.
- W2783285849 hasConceptScore W2783285849C121332964 @default.
- W2783285849 hasConceptScore W2783285849C132525143 @default.
- W2783285849 hasConceptScore W2783285849C134306372 @default.
- W2783285849 hasConceptScore W2783285849C2779557605 @default.
- W2783285849 hasConceptScore W2783285849C33923547 @default.
- W2783285849 hasConceptScore W2783285849C45340560 @default.
- W2783285849 hasConceptScore W2783285849C62520636 @default.
- W2783285849 hasConceptScore W2783285849C77553402 @default.
- W2783285849 hasConceptScore W2783285849C80899671 @default.
- W2783285849 hasIssue "1" @default.
- W2783285849 hasLocation W27832858491 @default.
- W2783285849 hasOpenAccess W2783285849 @default.
- W2783285849 hasPrimaryLocation W27832858491 @default.
- W2783285849 hasRelatedWork W2019945587 @default.
- W2783285849 hasRelatedWork W2057787145 @default.
- W2783285849 hasRelatedWork W2113436588 @default.
- W2783285849 hasRelatedWork W2170315171 @default.
- W2783285849 hasRelatedWork W2383129606 @default.
- W2783285849 hasRelatedWork W2896357665 @default.
- W2783285849 hasRelatedWork W3105270402 @default.
- W2783285849 hasRelatedWork W3185918591 @default.
- W2783285849 hasRelatedWork W4253656615 @default.
- W2783285849 hasRelatedWork W4289388956 @default.
- W2783285849 hasVolume "10" @default.
- W2783285849 isParatext "false" @default.
- W2783285849 isRetracted "false" @default.
- W2783285849 magId "2783285849" @default.
- W2783285849 workType "article" @default.