Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783287794> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2783287794 abstract "A growing need for scalable solutions for both machine learning and interactive analytics exists in the area of cyber-security. Machine learning aims at segmentation and classification of log events, which leads towards optimization of the threat monitoring processes. The tools for interactive analytics are required to resolve the uncertain cases, whereby machine learning algorithms are not able to provide a convincing outcome and human expertise is necessary. In this paper we focus on a case study of a security operations platform, whereby typical layers of information processing are integrated with a new database engine dedicated to approximate analytics. The engine makes it possible for the security experts to query massive log event data sets in a standard relational style. The query outputs are received orders of magnitude faster than any of the existing database solutions running with comparable resources and, in addition, they are sufficiently accurate to make the right decisions about suspicious corner cases. The engine internals are driven by the principles of information granulation and summary-based processing. They also refer to the ideas of data quantization, approximate computing, rough sets and probability propagation. In the paper we study how the engine's parameters can influence its performance within the considered environment. In addition to the results of experiments conducted on large data sets, we also discuss some of our high level design decisions including the choice of an approximate query result accuracy measure that should reflect the specifics of the considered threat monitoring operations." @default.
- W2783287794 created "2018-01-26" @default.
- W2783287794 creator A5002098274 @default.
- W2783287794 creator A5028695838 @default.
- W2783287794 creator A5051185579 @default.
- W2783287794 creator A5057541763 @default.
- W2783287794 creator A5072061216 @default.
- W2783287794 creator A5077236605 @default.
- W2783287794 date "2017-12-01" @default.
- W2783287794 modified "2023-10-18" @default.
- W2783287794 title "Scalable cyber-security analytics with a new summary-based approximate query engine" @default.
- W2783287794 cites W1985987493 @default.
- W2783287794 cites W2022858489 @default.
- W2783287794 cites W2065425170 @default.
- W2783287794 cites W2078436544 @default.
- W2783287794 cites W2085242400 @default.
- W2783287794 cites W2129418437 @default.
- W2783287794 cites W2132068130 @default.
- W2783287794 cites W2138722877 @default.
- W2783287794 cites W2142889610 @default.
- W2783287794 cites W2149194102 @default.
- W2783287794 cites W2150716099 @default.
- W2783287794 cites W2261233885 @default.
- W2783287794 cites W2271361137 @default.
- W2783287794 cites W2309616937 @default.
- W2783287794 cites W2519971059 @default.
- W2783287794 cites W2553417306 @default.
- W2783287794 cites W2613577383 @default.
- W2783287794 cites W2750680230 @default.
- W2783287794 cites W2756536429 @default.
- W2783287794 doi "https://doi.org/10.1109/bigdata.2017.8258128" @default.
- W2783287794 hasPublicationYear "2017" @default.
- W2783287794 type Work @default.
- W2783287794 sameAs 2783287794 @default.
- W2783287794 citedByCount "12" @default.
- W2783287794 countsByYear W27832877942018 @default.
- W2783287794 countsByYear W27832877942019 @default.
- W2783287794 countsByYear W27832877942020 @default.
- W2783287794 countsByYear W27832877942021 @default.
- W2783287794 countsByYear W27832877942022 @default.
- W2783287794 crossrefType "proceedings-article" @default.
- W2783287794 hasAuthorship W2783287794A5002098274 @default.
- W2783287794 hasAuthorship W2783287794A5028695838 @default.
- W2783287794 hasAuthorship W2783287794A5051185579 @default.
- W2783287794 hasAuthorship W2783287794A5057541763 @default.
- W2783287794 hasAuthorship W2783287794A5072061216 @default.
- W2783287794 hasAuthorship W2783287794A5077236605 @default.
- W2783287794 hasConcept C119857082 @default.
- W2783287794 hasConcept C124101348 @default.
- W2783287794 hasConcept C164120249 @default.
- W2783287794 hasConcept C192028432 @default.
- W2783287794 hasConcept C192939062 @default.
- W2783287794 hasConcept C23123220 @default.
- W2783287794 hasConcept C24028149 @default.
- W2783287794 hasConcept C41008148 @default.
- W2783287794 hasConcept C48044578 @default.
- W2783287794 hasConcept C75684735 @default.
- W2783287794 hasConcept C77088390 @default.
- W2783287794 hasConcept C79158427 @default.
- W2783287794 hasConcept C97854310 @default.
- W2783287794 hasConceptScore W2783287794C119857082 @default.
- W2783287794 hasConceptScore W2783287794C124101348 @default.
- W2783287794 hasConceptScore W2783287794C164120249 @default.
- W2783287794 hasConceptScore W2783287794C192028432 @default.
- W2783287794 hasConceptScore W2783287794C192939062 @default.
- W2783287794 hasConceptScore W2783287794C23123220 @default.
- W2783287794 hasConceptScore W2783287794C24028149 @default.
- W2783287794 hasConceptScore W2783287794C41008148 @default.
- W2783287794 hasConceptScore W2783287794C48044578 @default.
- W2783287794 hasConceptScore W2783287794C75684735 @default.
- W2783287794 hasConceptScore W2783287794C77088390 @default.
- W2783287794 hasConceptScore W2783287794C79158427 @default.
- W2783287794 hasConceptScore W2783287794C97854310 @default.
- W2783287794 hasLocation W27832877941 @default.
- W2783287794 hasOpenAccess W2783287794 @default.
- W2783287794 hasPrimaryLocation W27832877941 @default.
- W2783287794 hasRelatedWork W1524181014 @default.
- W2783287794 hasRelatedWork W2005975329 @default.
- W2783287794 hasRelatedWork W2007901510 @default.
- W2783287794 hasRelatedWork W2090066046 @default.
- W2783287794 hasRelatedWork W2145932802 @default.
- W2783287794 hasRelatedWork W2195236491 @default.
- W2783287794 hasRelatedWork W2284530523 @default.
- W2783287794 hasRelatedWork W2533628483 @default.
- W2783287794 hasRelatedWork W2583316396 @default.
- W2783287794 hasRelatedWork W2734006851 @default.
- W2783287794 hasRelatedWork W2765256767 @default.
- W2783287794 hasRelatedWork W2898204658 @default.
- W2783287794 hasRelatedWork W2906131295 @default.
- W2783287794 hasRelatedWork W3008365266 @default.
- W2783287794 hasRelatedWork W3011323947 @default.
- W2783287794 hasRelatedWork W3014308427 @default.
- W2783287794 hasRelatedWork W3099656240 @default.
- W2783287794 hasRelatedWork W3118758244 @default.
- W2783287794 hasRelatedWork W40337742 @default.
- W2783287794 hasRelatedWork W1674768379 @default.
- W2783287794 isParatext "false" @default.
- W2783287794 isRetracted "false" @default.
- W2783287794 magId "2783287794" @default.
- W2783287794 workType "article" @default.