Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783291568> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2783291568 abstract "The forecasting of time series data is an integral component for management, planning, and decision making. Following the Big Data trend, large amounts of time series data are available in many application domains. The highly dynamic and often noisy character of these domains in combination with the logistic problems of collecting data from a large number of data sources, imposes new requirements on the forecasting process. A constantly increasing number of time series has to be forecasted, preferably with low latency AND high accuracy. This is almost impossible, when keeping the traditional focus on creating one forecast model for each individual time series. In addition, often used forecasting approaches like ARIMA need complete historical data to train forecast models and fail if time series are intermittent. A method that addresses all these new requirements is the cross-sectional forecasting approach. It utilizes available data from many time series of the same domain in one single model, thus, missing values can be compensated and accurate forecast results can be calculated quickly. However, this approach is limited by a rigid training data selection and existing forecasting methods show that adaptability of the model to the data increases the forecast accuracy. Therefore, in this paper we present CSAR a model that extends the cross-sectional paradigm by adding more flexibility and allowing fine grained adaptations to the analyzed data. In this way, we achieve an increased forecast accuracy and thus a wider applicability." @default.
- W2783291568 created "2018-01-26" @default.
- W2783291568 creator A5005556093 @default.
- W2783291568 creator A5034533320 @default.
- W2783291568 creator A5057703543 @default.
- W2783291568 creator A5063512642 @default.
- W2783291568 date "2017-10-01" @default.
- W2783291568 modified "2023-09-23" @default.
- W2783291568 title "CSAR: The Cross-Sectional Autoregression Model" @default.
- W2783291568 cites W1678356000 @default.
- W2783291568 cites W2049578243 @default.
- W2783291568 cites W2050027464 @default.
- W2783291568 cites W2066881545 @default.
- W2783291568 cites W2085866051 @default.
- W2783291568 cites W2102201073 @default.
- W2783291568 cites W2105119576 @default.
- W2783291568 cites W2116512828 @default.
- W2783291568 cites W2128269288 @default.
- W2783291568 cites W2158978812 @default.
- W2783291568 cites W2165992248 @default.
- W2783291568 cites W2184254008 @default.
- W2783291568 cites W4239120131 @default.
- W2783291568 doi "https://doi.org/10.1109/dsaa.2017.27" @default.
- W2783291568 hasPublicationYear "2017" @default.
- W2783291568 type Work @default.
- W2783291568 sameAs 2783291568 @default.
- W2783291568 citedByCount "5" @default.
- W2783291568 countsByYear W27832915682017 @default.
- W2783291568 countsByYear W27832915682018 @default.
- W2783291568 countsByYear W27832915682019 @default.
- W2783291568 countsByYear W27832915682022 @default.
- W2783291568 crossrefType "proceedings-article" @default.
- W2783291568 hasAuthorship W2783291568A5005556093 @default.
- W2783291568 hasAuthorship W2783291568A5034533320 @default.
- W2783291568 hasAuthorship W2783291568A5057703543 @default.
- W2783291568 hasAuthorship W2783291568A5063512642 @default.
- W2783291568 hasConcept C107673813 @default.
- W2783291568 hasConcept C133029050 @default.
- W2783291568 hasConcept C137703641 @default.
- W2783291568 hasConcept C149782125 @default.
- W2783291568 hasConcept C154945302 @default.
- W2783291568 hasConcept C159877910 @default.
- W2783291568 hasConcept C162324750 @default.
- W2783291568 hasConcept C41008148 @default.
- W2783291568 hasConceptScore W2783291568C107673813 @default.
- W2783291568 hasConceptScore W2783291568C133029050 @default.
- W2783291568 hasConceptScore W2783291568C137703641 @default.
- W2783291568 hasConceptScore W2783291568C149782125 @default.
- W2783291568 hasConceptScore W2783291568C154945302 @default.
- W2783291568 hasConceptScore W2783291568C159877910 @default.
- W2783291568 hasConceptScore W2783291568C162324750 @default.
- W2783291568 hasConceptScore W2783291568C41008148 @default.
- W2783291568 hasLocation W27832915681 @default.
- W2783291568 hasOpenAccess W2783291568 @default.
- W2783291568 hasPrimaryLocation W27832915681 @default.
- W2783291568 hasRelatedWork W2042380567 @default.
- W2783291568 hasRelatedWork W2043697648 @default.
- W2783291568 hasRelatedWork W2077273402 @default.
- W2783291568 hasRelatedWork W2078613758 @default.
- W2783291568 hasRelatedWork W2085934172 @default.
- W2783291568 hasRelatedWork W2086441207 @default.
- W2783291568 hasRelatedWork W2093647618 @default.
- W2783291568 hasRelatedWork W2298137240 @default.
- W2783291568 hasRelatedWork W3122157831 @default.
- W2783291568 hasRelatedWork W3126142995 @default.
- W2783291568 isParatext "false" @default.
- W2783291568 isRetracted "false" @default.
- W2783291568 magId "2783291568" @default.
- W2783291568 workType "article" @default.