Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783307298> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W2783307298 abstract "In this paper we present an automatic clustering procedure with the main aim to predict the number of clusters of unknown, heterogeneous images. We used the Fisher-vector for mathematical representation of the images and these vectors were considered as input data points for the clustering algorithm. We implemented a novel variant of K-means, the kernel K-means++, furthermore the min-max kernel K-means plusplus (MMKK++) as clustering method. The proposed approach examines some candidate cluster numbers and determines the strength of the clustering to estimate how well the data fit into K clusters, as well as the law of large numbers was used in order to choose the optimal cluster size. We conducted experiments on four image sets to demonstrate the efficiency of our solution. The first two image sets are subsets of different popular collections; the third is their union; the fourth is the complete Caltech101 image set. The result showed that our approach was able to give a better estimation for the number of clusters than the competitor methods. Furthermore, we defined two new metrics for evaluation of predicting the appropriate cluster number, which are capable of measuring the goodness in a more sophisticated way, instead of binary evaluation." @default.
- W2783307298 created "2018-01-26" @default.
- W2783307298 creator A5046406057 @default.
- W2783307298 creator A5076485961 @default.
- W2783307298 date "2018-01-10" @default.
- W2783307298 modified "2023-10-13" @default.
- W2783307298 title "MMKK++ algorithm for clustering heterogeneous images into an unknown number of clusters" @default.
- W2783307298 doi "https://doi.org/10.5565/rev/elcvia.1054" @default.
- W2783307298 hasPublicationYear "2018" @default.
- W2783307298 type Work @default.
- W2783307298 sameAs 2783307298 @default.
- W2783307298 citedByCount "2" @default.
- W2783307298 countsByYear W27833072982019 @default.
- W2783307298 countsByYear W27833072982021 @default.
- W2783307298 crossrefType "journal-article" @default.
- W2783307298 hasAuthorship W2783307298A5046406057 @default.
- W2783307298 hasAuthorship W2783307298A5076485961 @default.
- W2783307298 hasBestOaLocation W27833072981 @default.
- W2783307298 hasConcept C11413529 @default.
- W2783307298 hasConcept C153180895 @default.
- W2783307298 hasConcept C154945302 @default.
- W2783307298 hasConcept C31972630 @default.
- W2783307298 hasConcept C41008148 @default.
- W2783307298 hasConcept C73555534 @default.
- W2783307298 hasConceptScore W2783307298C11413529 @default.
- W2783307298 hasConceptScore W2783307298C153180895 @default.
- W2783307298 hasConceptScore W2783307298C154945302 @default.
- W2783307298 hasConceptScore W2783307298C31972630 @default.
- W2783307298 hasConceptScore W2783307298C41008148 @default.
- W2783307298 hasConceptScore W2783307298C73555534 @default.
- W2783307298 hasLocation W27833072981 @default.
- W2783307298 hasLocation W27833072982 @default.
- W2783307298 hasLocation W27833072983 @default.
- W2783307298 hasLocation W27833072984 @default.
- W2783307298 hasOpenAccess W2783307298 @default.
- W2783307298 hasPrimaryLocation W27833072981 @default.
- W2783307298 hasRelatedWork W1891287906 @default.
- W2783307298 hasRelatedWork W1969923398 @default.
- W2783307298 hasRelatedWork W2036807459 @default.
- W2783307298 hasRelatedWork W2058170566 @default.
- W2783307298 hasRelatedWork W2170022336 @default.
- W2783307298 hasRelatedWork W2229312674 @default.
- W2783307298 hasRelatedWork W258625772 @default.
- W2783307298 hasRelatedWork W2755342338 @default.
- W2783307298 hasRelatedWork W2772917594 @default.
- W2783307298 hasRelatedWork W3116076068 @default.
- W2783307298 isParatext "false" @default.
- W2783307298 isRetracted "false" @default.
- W2783307298 magId "2783307298" @default.
- W2783307298 workType "article" @default.