Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783309529> ?p ?o ?g. }
- W2783309529 endingPage "165" @default.
- W2783309529 startingPage "151" @default.
- W2783309529 abstract "Abstract Knowledge of the dissolution mechanisms of carbon dioxide in silicate melts/glasses is indispensable for understanding its effects on physical and thermodynamic properties. Carbon dioxide is generally known to dissolve as molecular CO2 and CO32– species, with the latter dominant for depolymerized compositions. However, less is agreed upon about how the CO32– groups are incorporated, especially for depolymerized silicate melt compositions relevant to natural mafic and ultramafic magmas. Here we report 13C MAS and static NMR results on a series of 13CO2-bearing glasses (quenched from melts) of diverse silicate compositions, including nominally fully polymerized sodium aluminosilicate and calcium aluminosilicate, depolymerized sodium silicate and sodium aluminosilicate, and depolymerized calcium‑magnesium silicate and calcium aluminosilicate compositions (with varying degrees of polymerization), as well as ab initio calculations, to provide new constraints on the speciation of carbonates in silicate melts/glasses as a function of composition. The ab initio calculation revealed that both vibrational frequencies and 13C chemical shift tensor are sensitive to the local environments of carbonates. The splittings of the asymmetric stretching doublets (Δν3) for CO32– groups bonded to one or two tetrahedral Si/Al via two oxygens (network carbonates) are all relatively large (around 180–480 cm−1), contrary to previous speculations. In comparison, experimental data for CO32– groups bonded only to metal cations (free carbonates) in minerals show zero to moderate Δν3 (up to ~100 cm−1). Our calculations also showed that network carbonates bonded to one or two tetrahedral Si/Al both show 13C chemical shift tensor parameters (especially skew and isotropic chemical shift) that are distinctly different from those of free carbonates. Our 13C MAS and static NMR data, as well as infrared spectroscopic data (moderate Δν3 of 60–100 cm−1) from the literature, for depolymerized silicate and aluminosilicate glasses are all indicative of free carbonates as the dominant species. Data for nominally fully polymerized aluminosilicate compositions, on the other hand, are consistent with carbonate groups bonded to two Si/Al via two oxygens (network carbonate) as the dominant species. The quantitative 13C MAS NMR data also revealed the coexistence of a small amount of the other type of carbonate species, especially for Ca aluminosilicate glasses. These new structural insights should be valuable in helping better understand physical properties (e.g. viscosity) of CO2-bearing silicate melts of diverse compositions." @default.
- W2783309529 created "2018-01-26" @default.
- W2783309529 creator A5019514122 @default.
- W2783309529 creator A5030317011 @default.
- W2783309529 creator A5057739679 @default.
- W2783309529 creator A5084975573 @default.
- W2783309529 creator A5091623962 @default.
- W2783309529 date "2018-02-01" @default.
- W2783309529 modified "2023-10-18" @default.
- W2783309529 title "Carbonate speciation in depolymerized and polymerized (alumino)silicate glasses: Constraints from 13C MAS and static NMR measurements and ab initio calculations" @default.
- W2783309529 cites W1967303178 @default.
- W2783309529 cites W1968929525 @default.
- W2783309529 cites W1975948012 @default.
- W2783309529 cites W1978850296 @default.
- W2783309529 cites W1979604309 @default.
- W2783309529 cites W1980410091 @default.
- W2783309529 cites W1981466680 @default.
- W2783309529 cites W1989157061 @default.
- W2783309529 cites W1991753192 @default.
- W2783309529 cites W1992040014 @default.
- W2783309529 cites W1995641963 @default.
- W2783309529 cites W1997051437 @default.
- W2783309529 cites W1998463498 @default.
- W2783309529 cites W2000825767 @default.
- W2783309529 cites W2001159461 @default.
- W2783309529 cites W2007141186 @default.
- W2783309529 cites W2011683127 @default.
- W2783309529 cites W2012342290 @default.
- W2783309529 cites W2022999289 @default.
- W2783309529 cites W2034402580 @default.
- W2783309529 cites W2034426388 @default.
- W2783309529 cites W2034489583 @default.
- W2783309529 cites W2035761945 @default.
- W2783309529 cites W2036058458 @default.
- W2783309529 cites W2037587823 @default.
- W2783309529 cites W2041019765 @default.
- W2783309529 cites W2048500440 @default.
- W2783309529 cites W2048575115 @default.
- W2783309529 cites W2052918722 @default.
- W2783309529 cites W2054807801 @default.
- W2783309529 cites W2055484311 @default.
- W2783309529 cites W2055999343 @default.
- W2783309529 cites W2057098018 @default.
- W2783309529 cites W2060692038 @default.
- W2783309529 cites W2063833267 @default.
- W2783309529 cites W2080234211 @default.
- W2783309529 cites W2082442505 @default.
- W2783309529 cites W2084619794 @default.
- W2783309529 cites W2089705432 @default.
- W2783309529 cites W2090165787 @default.
- W2783309529 cites W2120417186 @default.
- W2783309529 cites W2138323349 @default.
- W2783309529 cites W2149522351 @default.
- W2783309529 cites W2153026654 @default.
- W2783309529 cites W2171903992 @default.
- W2783309529 cites W2193826099 @default.
- W2783309529 cites W2313071753 @default.
- W2783309529 cites W2326300665 @default.
- W2783309529 cites W2553773491 @default.
- W2783309529 cites W2592526069 @default.
- W2783309529 cites W2599395470 @default.
- W2783309529 cites W2732588078 @default.
- W2783309529 doi "https://doi.org/10.1016/j.chemgeo.2018.01.005" @default.
- W2783309529 hasPublicationYear "2018" @default.
- W2783309529 type Work @default.
- W2783309529 sameAs 2783309529 @default.
- W2783309529 citedByCount "9" @default.
- W2783309529 countsByYear W27833095292018 @default.
- W2783309529 countsByYear W27833095292020 @default.
- W2783309529 countsByYear W27833095292021 @default.
- W2783309529 countsByYear W27833095292022 @default.
- W2783309529 crossrefType "journal-article" @default.
- W2783309529 hasAuthorship W2783309529A5019514122 @default.
- W2783309529 hasAuthorship W2783309529A5030317011 @default.
- W2783309529 hasAuthorship W2783309529A5057739679 @default.
- W2783309529 hasAuthorship W2783309529A5084975573 @default.
- W2783309529 hasAuthorship W2783309529A5091623962 @default.
- W2783309529 hasConcept C127313418 @default.
- W2783309529 hasConcept C161790260 @default.
- W2783309529 hasConcept C163111631 @default.
- W2783309529 hasConcept C17409809 @default.
- W2783309529 hasConcept C178790620 @default.
- W2783309529 hasConcept C185592680 @default.
- W2783309529 hasConcept C199289684 @default.
- W2783309529 hasConcept C2776838516 @default.
- W2783309529 hasConcept C2777335606 @default.
- W2783309529 hasConcept C2780659211 @default.
- W2783309529 hasConcept C2781442258 @default.
- W2783309529 hasConcept C44228677 @default.
- W2783309529 hasConcept C521977710 @default.
- W2783309529 hasConcept C78458016 @default.
- W2783309529 hasConcept C85704489 @default.
- W2783309529 hasConcept C86803240 @default.
- W2783309529 hasConceptScore W2783309529C127313418 @default.
- W2783309529 hasConceptScore W2783309529C161790260 @default.
- W2783309529 hasConceptScore W2783309529C163111631 @default.
- W2783309529 hasConceptScore W2783309529C17409809 @default.
- W2783309529 hasConceptScore W2783309529C178790620 @default.