Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783350609> ?p ?o ?g. }
- W2783350609 endingPage "e463" @default.
- W2783350609 startingPage "e463" @default.
- W2783350609 abstract "A new hybrid guest–host material consisting of a Fabry–Pérot porous silicon (PSi) thin film, a nanostructured high surface-area matrix, and encapsulated fluorescent carbon quantum dots (C-dots) is described. The hybrid is synthesized by a facile in situ pyrolysis treatment of the carbonaceous precursor incorporated within the nanoscale pores of the inorganic host. The effects of nanoconfinement on the integrity of the C-dots and their optical properties are characterized. We show that the resulting hybrid allows for label-free optical detection of target molecules using two orthogonal modalities, that is, the white-light reflectivity of the PSi matrix and the fluorescence of the confined C-dots, and these two signals can be observed and collected simultaneously. The resulting hybrid system exhibits superior sensing performance in comparison with that of the individual components. Notably, we demonstrate that the confined C-dots exhibit greater sensitivity toward various analytes as well as an improved linear response, thus providing evidence of the impact of the host nanoscale porous scaffold on the optical properties of the C-dots. Moreover, we show that this orthogonal detection scheme increases the dynamic range of the sensor and minimizes false-negative results. A hybrid material with excellent molecule-sensing abilities has been created by scientists in Israel. Nanomaterials are ideal for optically identifying biomolecules. For example, carbon quantum dots emit light in a way that is highly sensitive to their environment. In contrast, nanoarchitectures based on porous silicon oxide offer versatile biosensing platforms based on light reflectivity but lack the sensitivity of quantum dots. Now, Ester Segal from the Technion Israel Institute of Technology and co-workers have developed a simple way to combine both materials. They formed carbon dots by inserting a carbon precursor into a porous silicon oxide matrix and heating it. This allowed the team to synthesize biocompatible nanomaterials for label-free detection using two independent optical signals. They used their material to detect trypsin and adenosine triphosphate with a better performance than either of the two materials on their own. A simple and robust single-step in situ synthesis of carbon dots (C-dots) within a porous silicon oxide (PSiO2) matrix is reported. The resulting new hybrid guest–host material exhibits promising capabilities as a label-free dual-mode optical biosensor via modulation of both the optical reflectance associated with the PSiO2 matrix, as well as the C-dots’ fluorescence, and these two signals can be observed and collected simultaneously. The resulting sensing platform exhibits enhanced sensitivity, improved linear response, as well as a wider dynamic range in comparison to its single components." @default.
- W2783350609 created "2018-01-26" @default.
- W2783350609 creator A5012498551 @default.
- W2783350609 creator A5037130972 @default.
- W2783350609 creator A5042967378 @default.
- W2783350609 creator A5054704772 @default.
- W2783350609 creator A5069243355 @default.
- W2783350609 date "2018-01-01" @default.
- W2783350609 modified "2023-10-16" @default.
- W2783350609 title "Synthesis and characterization of a nanostructured porous silicon/carbon dot-hybrid for orthogonal molecular detection" @default.
- W2783350609 cites W1706259688 @default.
- W2783350609 cites W1948951863 @default.
- W2783350609 cites W1963786440 @default.
- W2783350609 cites W1964396362 @default.
- W2783350609 cites W1970290419 @default.
- W2783350609 cites W1977695674 @default.
- W2783350609 cites W1983181077 @default.
- W2783350609 cites W1986882225 @default.
- W2783350609 cites W1990835613 @default.
- W2783350609 cites W1996994784 @default.
- W2783350609 cites W2009620516 @default.
- W2783350609 cites W2010080569 @default.
- W2783350609 cites W2010235040 @default.
- W2783350609 cites W2013755034 @default.
- W2783350609 cites W2015202932 @default.
- W2783350609 cites W202182424 @default.
- W2783350609 cites W2026524260 @default.
- W2783350609 cites W2035516583 @default.
- W2783350609 cites W2042260515 @default.
- W2783350609 cites W2046356526 @default.
- W2783350609 cites W2056956258 @default.
- W2783350609 cites W2060057394 @default.
- W2783350609 cites W2070977943 @default.
- W2783350609 cites W2075580368 @default.
- W2783350609 cites W2094766165 @default.
- W2783350609 cites W2095023475 @default.
- W2783350609 cites W2103911546 @default.
- W2783350609 cites W2106703796 @default.
- W2783350609 cites W2135155427 @default.
- W2783350609 cites W2136693699 @default.
- W2783350609 cites W2145445053 @default.
- W2783350609 cites W2161203525 @default.
- W2783350609 cites W2161933911 @default.
- W2783350609 cites W2164041011 @default.
- W2783350609 cites W2169336018 @default.
- W2783350609 cites W2178362095 @default.
- W2783350609 cites W2224572019 @default.
- W2783350609 cites W2239095738 @default.
- W2783350609 cites W2313691960 @default.
- W2783350609 cites W2320700139 @default.
- W2783350609 cites W2323365517 @default.
- W2783350609 cites W2327804778 @default.
- W2783350609 cites W2346450363 @default.
- W2783350609 cites W2549304654 @default.
- W2783350609 cites W2588278653 @default.
- W2783350609 cites W4242739446 @default.
- W2783350609 doi "https://doi.org/10.1038/am.2017.233" @default.
- W2783350609 hasPublicationYear "2018" @default.
- W2783350609 type Work @default.
- W2783350609 sameAs 2783350609 @default.
- W2783350609 citedByCount "26" @default.
- W2783350609 countsByYear W27833506092018 @default.
- W2783350609 countsByYear W27833506092019 @default.
- W2783350609 countsByYear W27833506092020 @default.
- W2783350609 countsByYear W27833506092021 @default.
- W2783350609 countsByYear W27833506092022 @default.
- W2783350609 countsByYear W27833506092023 @default.
- W2783350609 crossrefType "journal-article" @default.
- W2783350609 hasAuthorship W2783350609A5012498551 @default.
- W2783350609 hasAuthorship W2783350609A5037130972 @default.
- W2783350609 hasAuthorship W2783350609A5042967378 @default.
- W2783350609 hasAuthorship W2783350609A5054704772 @default.
- W2783350609 hasAuthorship W2783350609A5069243355 @default.
- W2783350609 hasBestOaLocation W27833506091 @default.
- W2783350609 hasConcept C104779481 @default.
- W2783350609 hasConcept C120665830 @default.
- W2783350609 hasConcept C121332964 @default.
- W2783350609 hasConcept C124657808 @default.
- W2783350609 hasConcept C138631740 @default.
- W2783350609 hasConcept C140205800 @default.
- W2783350609 hasConcept C155672457 @default.
- W2783350609 hasConcept C159985019 @default.
- W2783350609 hasConcept C160756335 @default.
- W2783350609 hasConcept C171250308 @default.
- W2783350609 hasConcept C192562407 @default.
- W2783350609 hasConcept C27019838 @default.
- W2783350609 hasConcept C2776685891 @default.
- W2783350609 hasConcept C45206210 @default.
- W2783350609 hasConcept C49040817 @default.
- W2783350609 hasConcept C49853544 @default.
- W2783350609 hasConcept C544956773 @default.
- W2783350609 hasConcept C6648577 @default.
- W2783350609 hasConcept C91881484 @default.
- W2783350609 hasConceptScore W2783350609C104779481 @default.
- W2783350609 hasConceptScore W2783350609C120665830 @default.
- W2783350609 hasConceptScore W2783350609C121332964 @default.
- W2783350609 hasConceptScore W2783350609C124657808 @default.
- W2783350609 hasConceptScore W2783350609C138631740 @default.