Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783398640> ?p ?o ?g. }
- W2783398640 endingPage "065005" @default.
- W2783398640 startingPage "065005" @default.
- W2783398640 abstract "Adiabatic braiding of Majorana zero modes can be used for topologically protected quantum information processing. While extremely robust to many environmental perturbations, these systems are vulnerable to noise with high-frequency components. Ironically, slower processes needed for adiabaticity allow more noise-induced excitations to accumulate, resulting in an antiadiabatic behavior that limits the precision of Majorana gates if some noise is present. In a recent publication (2017 Phys. Rev. B 96 075158), fast optimal protocols were proposed as a shortcut for implementing the same unitary operation as the adiabatic braiding in a low-energy effective model. These shortcuts sacrifice topological protection in the absence of noise but provide performance gains and remarkable robustness to noise due to the shorter evolution time. Nevertheless, gates optimized for vanishing noise are suboptimal in the presence of noise. If we know the noise strength beforehand, can we design protocols optimized for the existing unavoidable noise, which will effectively correct the noise-induced errors? We address this question in the present paper, focusing on the same low-energy effective model. We find such optimal protocols using simulated-annealing Monte Carlo simulations. The numerically found pulse shapes, which we fully characterize, are in agreement with Pontryagin's minimum principle, which allows us to arbitrarily improve the approximate numerical results (due to discretization and imperfect convergence) and obtain numerically exact optimal protocols. The protocols are bang–bang (sequence of sudden quenches) for vanishing noise, but contain continuous segments in the presence of multiplicative noise due to the nonlinearity of the master equation governing the evolution. We find that such noise-optimized protocols completely eliminate the above-mentioned antiadiabatic behavior. The final error corresponding to these optimal protocols monotonically decreases with the total time (in three different regimes). A liner fit to 1/τ indicates extrapolation of the cost function to finite value in the limit. However, quadratic and cubic fits are more suggestive of the cost function extrapolating to zero in the limit of infinite time. Our results set the precision limit of the device as a function of the noise strength and total time." @default.
- W2783398640 created "2018-01-26" @default.
- W2783398640 creator A5022556036 @default.
- W2783398640 creator A5028761167 @default.
- W2783398640 date "2018-06-28" @default.
- W2783398640 modified "2023-10-02" @default.
- W2783398640 title "Optimal noise-canceling shortcuts to adiabaticity: application to noisy Majorana-based gates" @default.
- W2783398640 cites W1487236218 @default.
- W2783398640 cites W1571271309 @default.
- W2783398640 cites W1589112037 @default.
- W2783398640 cites W1779948726 @default.
- W2783398640 cites W1835687610 @default.
- W2783398640 cites W1973972788 @default.
- W2783398640 cites W1980405365 @default.
- W2783398640 cites W1981871760 @default.
- W2783398640 cites W1986947110 @default.
- W2783398640 cites W1987332096 @default.
- W2783398640 cites W1993927487 @default.
- W2783398640 cites W2003526683 @default.
- W2783398640 cites W2005781350 @default.
- W2783398640 cites W2013500054 @default.
- W2783398640 cites W2014649577 @default.
- W2783398640 cites W2015130607 @default.
- W2783398640 cites W2017152265 @default.
- W2783398640 cites W2018791561 @default.
- W2783398640 cites W2024969133 @default.
- W2783398640 cites W2036795049 @default.
- W2783398640 cites W2039774900 @default.
- W2783398640 cites W2040027338 @default.
- W2783398640 cites W2044255239 @default.
- W2783398640 cites W2055424520 @default.
- W2783398640 cites W2060246281 @default.
- W2783398640 cites W2065361411 @default.
- W2783398640 cites W2067650803 @default.
- W2783398640 cites W2083494341 @default.
- W2783398640 cites W2085427511 @default.
- W2783398640 cites W2087039395 @default.
- W2783398640 cites W2088300719 @default.
- W2783398640 cites W2089843538 @default.
- W2783398640 cites W2098807109 @default.
- W2783398640 cites W2100366166 @default.
- W2783398640 cites W2115109350 @default.
- W2783398640 cites W2116325781 @default.
- W2783398640 cites W2135273380 @default.
- W2783398640 cites W2152240519 @default.
- W2783398640 cites W2158979840 @default.
- W2783398640 cites W2160084444 @default.
- W2783398640 cites W2164495185 @default.
- W2783398640 cites W2181891647 @default.
- W2783398640 cites W2231791940 @default.
- W2783398640 cites W2246048520 @default.
- W2783398640 cites W2346459317 @default.
- W2783398640 cites W2469757275 @default.
- W2783398640 cites W2513651887 @default.
- W2783398640 cites W2534820175 @default.
- W2783398640 cites W2580592926 @default.
- W2783398640 cites W2604247548 @default.
- W2783398640 cites W2604381952 @default.
- W2783398640 cites W2606182139 @default.
- W2783398640 cites W2609167442 @default.
- W2783398640 cites W2745579037 @default.
- W2783398640 cites W2784364153 @default.
- W2783398640 cites W3100255188 @default.
- W2783398640 cites W3100642185 @default.
- W2783398640 cites W3101044933 @default.
- W2783398640 cites W3104667436 @default.
- W2783398640 cites W3104863487 @default.
- W2783398640 cites W3105260123 @default.
- W2783398640 cites W3105320508 @default.
- W2783398640 cites W3105605562 @default.
- W2783398640 cites W3105826535 @default.
- W2783398640 cites W3123172598 @default.
- W2783398640 cites W4230691310 @default.
- W2783398640 doi "https://doi.org/10.1088/1367-2630/aaca62" @default.
- W2783398640 hasPublicationYear "2018" @default.
- W2783398640 type Work @default.
- W2783398640 sameAs 2783398640 @default.
- W2783398640 citedByCount "14" @default.
- W2783398640 countsByYear W27833986402019 @default.
- W2783398640 countsByYear W27833986402020 @default.
- W2783398640 countsByYear W27833986402021 @default.
- W2783398640 countsByYear W27833986402022 @default.
- W2783398640 countsByYear W27833986402023 @default.
- W2783398640 crossrefType "journal-article" @default.
- W2783398640 hasAuthorship W2783398640A5022556036 @default.
- W2783398640 hasAuthorship W2783398640A5028761167 @default.
- W2783398640 hasBestOaLocation W27833986401 @default.
- W2783398640 hasConcept C104317684 @default.
- W2783398640 hasConcept C109663097 @default.
- W2783398640 hasConcept C111996192 @default.
- W2783398640 hasConcept C114614502 @default.
- W2783398640 hasConcept C115961682 @default.
- W2783398640 hasConcept C121332964 @default.
- W2783398640 hasConcept C121864883 @default.
- W2783398640 hasConcept C131021393 @default.
- W2783398640 hasConcept C13412647 @default.
- W2783398640 hasConcept C154945302 @default.
- W2783398640 hasConcept C18015164 @default.