Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783409338> ?p ?o ?g. }
- W2783409338 abstract "Cloud computing datacenters consume huge amounts of energy, which has high cost and large environmental impact. There has been significant amount of research on dynamic power management, which shuts down unutilized equipment in a datacenter to reduce energy consumption. The main consumers of power in a datacenter are servers, communications network and the cooling system. Optimization of power in a datacenter is a difficult problem because of server resource constraints, network topology and bandwidth constraints, cost of VM migration, the heterogeneity of workloads and the servers. The arrival of new jobs and departure of completed jobs also create workload heterogeneity in time. As a result, most of the previous research has concentrated on partial optimization of power consumption, which optimizes either server and/or network power consumption through placement of VMs. Temporal load aware optimization, minimization of power consumption as a function of time has vastly been studied. When optimization also included migration, then solution had been divided into two steps, in the first step optimization of server and/or network power consumption is performed and in the second step migration of VMs has been taken care of, which is not an optimal solution. In this work, we develop joint optimization of power consumption of servers, network communications and cost of migration with workload and server heterogeneity subject to resource and bandwidth constraints through VM placement. Optimization results in an integer quadratic program (IQP) with linear/quadratic constraints in number of VMs assigned to a job on a server. IQP can only be solved for very small size systems, however, we have been able to decompose IQP to master and pricing sub-problems which may be solved through column generation technique for systems with larger sizes. Then, we have extended the optimization to manage temporal heterogeneity of the workload. It is assumed that time-axis is slotted and at the end of each slot jobs makes probabilistic complete/partial release of the VMs that they are holding and there will also be new job arrivals according to a Poisson process. The system will perform re-optimization of power consumption at the end of each slot that also includes the cost of VM migration. In the re-optimization, VMs of unfinished jobs may experience migration while new jobs are assigned VMs. We have obtained numerical results for optimal power consumption for the system as well as its power consumption due to two heuristic VM assignment algorithms. The results show optimization achieves significant power savings compared to the heuristic algorithms. We believe that our work advances state-of-the art in dynamic power management of datacenters and the results will be helpful to cloud service providers in achieving energy saving." @default.
- W2783409338 created "2018-01-26" @default.
- W2783409338 creator A5012324617 @default.
- W2783409338 date "2018-01-08" @default.
- W2783409338 modified "2023-10-16" @default.
- W2783409338 title "Energy efficient temporal load aware resource allocation in cloud computing datacenters" @default.
- W2783409338 cites W1470501120 @default.
- W2783409338 cites W1970355999 @default.
- W2783409338 cites W1970928305 @default.
- W2783409338 cites W1984214681 @default.
- W2783409338 cites W1986526954 @default.
- W2783409338 cites W1986800449 @default.
- W2783409338 cites W1998647932 @default.
- W2783409338 cites W2002227246 @default.
- W2783409338 cites W2012130112 @default.
- W2783409338 cites W2027314076 @default.
- W2783409338 cites W2032681711 @default.
- W2783409338 cites W2057543533 @default.
- W2783409338 cites W2058357289 @default.
- W2783409338 cites W2062832101 @default.
- W2783409338 cites W2072362295 @default.
- W2783409338 cites W2073965851 @default.
- W2783409338 cites W2075233755 @default.
- W2783409338 cites W2075453184 @default.
- W2783409338 cites W2080521149 @default.
- W2783409338 cites W2101352979 @default.
- W2783409338 cites W2105661057 @default.
- W2783409338 cites W2109357436 @default.
- W2783409338 cites W2110292857 @default.
- W2783409338 cites W2118955868 @default.
- W2783409338 cites W2127087935 @default.
- W2783409338 cites W2130531694 @default.
- W2783409338 cites W2131392105 @default.
- W2783409338 cites W2139573800 @default.
- W2783409338 cites W2140644653 @default.
- W2783409338 cites W2143065961 @default.
- W2783409338 cites W2148459868 @default.
- W2783409338 cites W2156062774 @default.
- W2783409338 cites W2168595508 @default.
- W2783409338 cites W2171575705 @default.
- W2783409338 cites W2216734013 @default.
- W2783409338 cites W2263512615 @default.
- W2783409338 cites W2295276436 @default.
- W2783409338 cites W2344197414 @default.
- W2783409338 cites W2477940991 @default.
- W2783409338 cites W2505968561 @default.
- W2783409338 cites W2526695150 @default.
- W2783409338 cites W2552083296 @default.
- W2783409338 cites W2558189613 @default.
- W2783409338 cites W2606869009 @default.
- W2783409338 cites W2613694343 @default.
- W2783409338 cites W2625191576 @default.
- W2783409338 cites W292761019 @default.
- W2783409338 cites W3006995895 @default.
- W2783409338 cites W3105620684 @default.
- W2783409338 cites W4232093111 @default.
- W2783409338 cites W4237515752 @default.
- W2783409338 doi "https://doi.org/10.1186/s13677-017-0103-2" @default.
- W2783409338 hasPublicationYear "2018" @default.
- W2783409338 type Work @default.
- W2783409338 sameAs 2783409338 @default.
- W2783409338 citedByCount "33" @default.
- W2783409338 countsByYear W27834093382018 @default.
- W2783409338 countsByYear W27834093382019 @default.
- W2783409338 countsByYear W27834093382020 @default.
- W2783409338 countsByYear W27834093382021 @default.
- W2783409338 countsByYear W27834093382022 @default.
- W2783409338 countsByYear W27834093382023 @default.
- W2783409338 crossrefType "journal-article" @default.
- W2783409338 hasAuthorship W2783409338A5012324617 @default.
- W2783409338 hasBestOaLocation W27834093381 @default.
- W2783409338 hasConcept C111919701 @default.
- W2783409338 hasConcept C11413529 @default.
- W2783409338 hasConcept C120314980 @default.
- W2783409338 hasConcept C137836250 @default.
- W2783409338 hasConcept C18903297 @default.
- W2783409338 hasConcept C25344961 @default.
- W2783409338 hasConcept C2776257435 @default.
- W2783409338 hasConcept C2778476105 @default.
- W2783409338 hasConcept C2780165032 @default.
- W2783409338 hasConcept C31258907 @default.
- W2783409338 hasConcept C41008148 @default.
- W2783409338 hasConcept C79403827 @default.
- W2783409338 hasConcept C79974875 @default.
- W2783409338 hasConcept C86803240 @default.
- W2783409338 hasConcept C93996380 @default.
- W2783409338 hasConceptScore W2783409338C111919701 @default.
- W2783409338 hasConceptScore W2783409338C11413529 @default.
- W2783409338 hasConceptScore W2783409338C120314980 @default.
- W2783409338 hasConceptScore W2783409338C137836250 @default.
- W2783409338 hasConceptScore W2783409338C18903297 @default.
- W2783409338 hasConceptScore W2783409338C25344961 @default.
- W2783409338 hasConceptScore W2783409338C2776257435 @default.
- W2783409338 hasConceptScore W2783409338C2778476105 @default.
- W2783409338 hasConceptScore W2783409338C2780165032 @default.
- W2783409338 hasConceptScore W2783409338C31258907 @default.
- W2783409338 hasConceptScore W2783409338C41008148 @default.
- W2783409338 hasConceptScore W2783409338C79403827 @default.
- W2783409338 hasConceptScore W2783409338C79974875 @default.
- W2783409338 hasConceptScore W2783409338C86803240 @default.