Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783416759> ?p ?o ?g. }
- W2783416759 endingPage "55" @default.
- W2783416759 startingPage "55" @default.
- W2783416759 abstract "Response rates to available treatments for psychological and chronic pain disorders are poor, and there is a considerable burden of suffering and disability for patients, who often cycle through several rounds of ineffective treatment. As individuals presenting to the clinic with symptoms of these disorders are likely to be heterogeneous, there is considerable interest in the possibility that different constellations of signs could be used to identify subgroups of patients that might preferentially benefit from particular kinds of treatment. To this end, there has been a recent focus on the application of machine learning methods to attempt to identify sets of predictor variables (demographic, genetic, etc.) that could be used to target individuals towards treatments that are more likely to work for them in the first instance. Importantly, the training of such models generally relies on datasets where groups of individual predictor variables are labelled with a binary outcome category - usually 'responder' or 'non-responder' (to a particular treatment). However, as previously highlighted in other areas of medicine, there is a basic statistical problem in classifying individuals as 'responding' to a particular treatment on the basis of data from conventional randomized controlled trials. Specifically, insufficient information on the partition of variance components in individual symptom changes mean that it is inappropriate to consider data from the active treatment arm alone in this way. This may be particularly problematic in the case of psychiatric and chronic pain symptom data, where both within-subject variability and measurement error are likely to be high. Here, we outline some possible solutions to this problem in terms of dataset design and machine learning methodology, and conclude that it is important to carefully consider the kind of inferences that particular training data are able to afford, especially in arenas where the potential clinical benefit is so large." @default.
- W2783416759 created "2018-01-26" @default.
- W2783416759 creator A5011993307 @default.
- W2783416759 creator A5031931627 @default.
- W2783416759 date "2018-03-01" @default.
- W2783416759 modified "2023-09-26" @default.
- W2783416759 title "Response heterogeneity: Challenges for personalised medicine and big data approaches in psychiatry and chronic pain" @default.
- W2783416759 cites W1970365815 @default.
- W2783416759 cites W1984029156 @default.
- W2783416759 cites W2015712245 @default.
- W2783416759 cites W2020265264 @default.
- W2783416759 cites W2031672164 @default.
- W2783416759 cites W2040925948 @default.
- W2783416759 cites W2068325350 @default.
- W2783416759 cites W2073526412 @default.
- W2783416759 cites W2099703952 @default.
- W2783416759 cites W2104818454 @default.
- W2783416759 cites W2110920143 @default.
- W2783416759 cites W2113428581 @default.
- W2783416759 cites W2121487646 @default.
- W2783416759 cites W2125643891 @default.
- W2783416759 cites W2129476280 @default.
- W2783416759 cites W2131885284 @default.
- W2783416759 cites W2132324173 @default.
- W2783416759 cites W2137597548 @default.
- W2783416759 cites W2155959499 @default.
- W2783416759 cites W2166770001 @default.
- W2783416759 cites W2167724762 @default.
- W2783416759 cites W2172280757 @default.
- W2783416759 cites W2226243673 @default.
- W2783416759 cites W2257438637 @default.
- W2783416759 cites W2466989778 @default.
- W2783416759 cites W2580744997 @default.
- W2783416759 cites W2592616718 @default.
- W2783416759 cites W2738873788 @default.
- W2783416759 cites W2743014850 @default.
- W2783416759 cites W3194956376 @default.
- W2783416759 cites W4242356208 @default.
- W2783416759 doi "https://doi.org/10.12688/f1000research.13723.2" @default.
- W2783416759 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5820606" @default.
- W2783416759 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29527298" @default.
- W2783416759 hasPublicationYear "2018" @default.
- W2783416759 type Work @default.
- W2783416759 sameAs 2783416759 @default.
- W2783416759 citedByCount "2" @default.
- W2783416759 countsByYear W27834167592018 @default.
- W2783416759 countsByYear W27834167592020 @default.
- W2783416759 crossrefType "journal-article" @default.
- W2783416759 hasAuthorship W2783416759A5011993307 @default.
- W2783416759 hasAuthorship W2783416759A5031931627 @default.
- W2783416759 hasBestOaLocation W27834167591 @default.
- W2783416759 hasConcept C118552586 @default.
- W2783416759 hasConcept C121955636 @default.
- W2783416759 hasConcept C141071460 @default.
- W2783416759 hasConcept C142724271 @default.
- W2783416759 hasConcept C144133560 @default.
- W2783416759 hasConcept C163763905 @default.
- W2783416759 hasConcept C168563851 @default.
- W2783416759 hasConcept C196083921 @default.
- W2783416759 hasConcept C2781118164 @default.
- W2783416759 hasConcept C70410870 @default.
- W2783416759 hasConcept C71924100 @default.
- W2783416759 hasConceptScore W2783416759C118552586 @default.
- W2783416759 hasConceptScore W2783416759C121955636 @default.
- W2783416759 hasConceptScore W2783416759C141071460 @default.
- W2783416759 hasConceptScore W2783416759C142724271 @default.
- W2783416759 hasConceptScore W2783416759C144133560 @default.
- W2783416759 hasConceptScore W2783416759C163763905 @default.
- W2783416759 hasConceptScore W2783416759C168563851 @default.
- W2783416759 hasConceptScore W2783416759C196083921 @default.
- W2783416759 hasConceptScore W2783416759C2781118164 @default.
- W2783416759 hasConceptScore W2783416759C70410870 @default.
- W2783416759 hasConceptScore W2783416759C71924100 @default.
- W2783416759 hasLocation W27834167591 @default.
- W2783416759 hasLocation W27834167592 @default.
- W2783416759 hasLocation W27834167593 @default.
- W2783416759 hasLocation W27834167594 @default.
- W2783416759 hasOpenAccess W2783416759 @default.
- W2783416759 hasPrimaryLocation W27834167591 @default.
- W2783416759 hasRelatedWork W1601387817 @default.
- W2783416759 hasRelatedWork W2003902285 @default.
- W2783416759 hasRelatedWork W2010674439 @default.
- W2783416759 hasRelatedWork W2114597639 @default.
- W2783416759 hasRelatedWork W2143048850 @default.
- W2783416759 hasRelatedWork W2164167632 @default.
- W2783416759 hasRelatedWork W2208976871 @default.
- W2783416759 hasRelatedWork W2279642353 @default.
- W2783416759 hasRelatedWork W2460242679 @default.
- W2783416759 hasRelatedWork W2558610545 @default.
- W2783416759 hasRelatedWork W2596090775 @default.
- W2783416759 hasRelatedWork W2753121269 @default.
- W2783416759 hasRelatedWork W2971323099 @default.
- W2783416759 hasRelatedWork W2973602284 @default.
- W2783416759 hasRelatedWork W3087001700 @default.
- W2783416759 hasRelatedWork W3107735537 @default.
- W2783416759 hasRelatedWork W3119731573 @default.
- W2783416759 hasRelatedWork W49743539 @default.
- W2783416759 hasRelatedWork W58923687 @default.