Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783443797> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2783443797 abstract "Graph analysis can capture relationships between network entities and can be used to identify and rank anomalous hosts, users, or applications from various types of cyber logs. It is often the case that the data in the logs can be represented as a bipartite graph (e.g. internal IP-external IP, user-application, or client-server). State-of-the-art graph based anomaly detection often generalizes across all types of graphs — namely bipartite and non-bipartite. This confounds the interpretation and use of specific graph features such as degree, page rank, and eigencentrality that can provide a security analyst with situational awareness and even insights to potential attacks on enterprise scale networks. Furthermore, graph algorithms applied to data collected from large, distributed enterprise scale networks require accompanying methods that allow them to scale to the data collected. In this paper, we provide a novel, scalable, directional graph projection framework that operates on cyber logs that can be represented as bipartite graphs. We also present methodologies to further narrow returned results to anomalous/outlier cases that may be indicative of a cyber security event. This framework computes directional graph projections and identifies a set of interpretable graph features that describe anomalies within each partite." @default.
- W2783443797 created "2018-01-26" @default.
- W2783443797 creator A5003796254 @default.
- W2783443797 creator A5010119669 @default.
- W2783443797 creator A5036081460 @default.
- W2783443797 creator A5069782628 @default.
- W2783443797 date "2017-12-01" @default.
- W2783443797 modified "2023-09-23" @default.
- W2783443797 title "Deriving cyber use cases from graph projections of cyber data represented as bipartite graphs" @default.
- W2783443797 cites W1492581097 @default.
- W2783443797 cites W1991357106 @default.
- W2783443797 cites W2031163547 @default.
- W2783443797 cites W2074403295 @default.
- W2783443797 cites W2101492723 @default.
- W2783443797 cites W2115547324 @default.
- W2783443797 cites W2117831564 @default.
- W2783443797 cites W2275070211 @default.
- W2783443797 cites W4254182148 @default.
- W2783443797 doi "https://doi.org/10.1109/bigdata.2017.8258511" @default.
- W2783443797 hasPublicationYear "2017" @default.
- W2783443797 type Work @default.
- W2783443797 sameAs 2783443797 @default.
- W2783443797 citedByCount "3" @default.
- W2783443797 countsByYear W27834437972021 @default.
- W2783443797 countsByYear W27834437972023 @default.
- W2783443797 crossrefType "proceedings-article" @default.
- W2783443797 hasAuthorship W2783443797A5003796254 @default.
- W2783443797 hasAuthorship W2783443797A5010119669 @default.
- W2783443797 hasAuthorship W2783443797A5036081460 @default.
- W2783443797 hasAuthorship W2783443797A5069782628 @default.
- W2783443797 hasConcept C124101348 @default.
- W2783443797 hasConcept C132525143 @default.
- W2783443797 hasConcept C176225458 @default.
- W2783443797 hasConcept C197657726 @default.
- W2783443797 hasConcept C41008148 @default.
- W2783443797 hasConcept C48044578 @default.
- W2783443797 hasConcept C77088390 @default.
- W2783443797 hasConcept C80444323 @default.
- W2783443797 hasConceptScore W2783443797C124101348 @default.
- W2783443797 hasConceptScore W2783443797C132525143 @default.
- W2783443797 hasConceptScore W2783443797C176225458 @default.
- W2783443797 hasConceptScore W2783443797C197657726 @default.
- W2783443797 hasConceptScore W2783443797C41008148 @default.
- W2783443797 hasConceptScore W2783443797C48044578 @default.
- W2783443797 hasConceptScore W2783443797C77088390 @default.
- W2783443797 hasConceptScore W2783443797C80444323 @default.
- W2783443797 hasLocation W27834437971 @default.
- W2783443797 hasOpenAccess W2783443797 @default.
- W2783443797 hasPrimaryLocation W27834437971 @default.
- W2783443797 hasRelatedWork W1647260487 @default.
- W2783443797 hasRelatedWork W1983285030 @default.
- W2783443797 hasRelatedWork W2000777924 @default.
- W2783443797 hasRelatedWork W2054205234 @default.
- W2783443797 hasRelatedWork W2132938399 @default.
- W2783443797 hasRelatedWork W2443728350 @default.
- W2783443797 hasRelatedWork W2786871271 @default.
- W2783443797 hasRelatedWork W2804167027 @default.
- W2783443797 hasRelatedWork W2893486522 @default.
- W2783443797 hasRelatedWork W2901723355 @default.
- W2783443797 hasRelatedWork W2914086750 @default.
- W2783443797 hasRelatedWork W2963740994 @default.
- W2783443797 hasRelatedWork W3038461281 @default.
- W2783443797 hasRelatedWork W3092083952 @default.
- W2783443797 hasRelatedWork W3102096285 @default.
- W2783443797 hasRelatedWork W3128567082 @default.
- W2783443797 hasRelatedWork W3154735260 @default.
- W2783443797 hasRelatedWork W3162239423 @default.
- W2783443797 hasRelatedWork W3172158142 @default.
- W2783443797 hasRelatedWork W897137307 @default.
- W2783443797 isParatext "false" @default.
- W2783443797 isRetracted "false" @default.
- W2783443797 magId "2783443797" @default.
- W2783443797 workType "article" @default.