Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783445758> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2783445758 abstract "We consider the problem of a single electron on one and two-dimensional quasiperiodic tilings. We first introduce quasiperiodic tilings from a geometrical point of view, and point out that among aperiodic tilings, they are the closest to being periodic. Focusing on one of the simplest one-dimensional quasiperiodic tilings, the Fibonacci chain, we show, with the help of a renormalization group analysis, that the multifractality of the electronic states is a direct consequence of the scale invariance of the chain. Considering now a broader class of quasiperiodic chains, we study the gap labeling theorem, which relates the geometry of a given chain to the set of values the integrated density of states can take in the gaps of the electronic spectrum. More precisely, we study how this theorem is modified when considering a sequence of approximant chains approaching a quasiperiodic one. Finally, we show how geometrical height fields can be used to construct exact eigenstates on one and two-dimensional quasiperiodic tilings. These states are robust to perturbations of the Hamiltonian, provided that they respect the symmetries of the underlying tiling. These states are critical, and we relate their fractal dimensions to the probability distribution of the height field, which we compute exactly. In the case of quasiperiodic chains, we show that the conductivity follows a scaling law, with an exponent given by the same probability distribution." @default.
- W2783445758 created "2018-01-26" @default.
- W2783445758 creator A5089723485 @default.
- W2783445758 date "2017-09-28" @default.
- W2783445758 modified "2023-09-27" @default.
- W2783445758 title "Electronic properties of quasicrystals" @default.
- W2783445758 hasPublicationYear "2017" @default.
- W2783445758 type Work @default.
- W2783445758 sameAs 2783445758 @default.
- W2783445758 citedByCount "0" @default.
- W2783445758 crossrefType "dissertation" @default.
- W2783445758 hasAuthorship W2783445758A5089723485 @default.
- W2783445758 hasConcept C104247578 @default.
- W2783445758 hasConcept C114614502 @default.
- W2783445758 hasConcept C121332964 @default.
- W2783445758 hasConcept C121864883 @default.
- W2783445758 hasConcept C134306372 @default.
- W2783445758 hasConcept C173734053 @default.
- W2783445758 hasConcept C18802822 @default.
- W2783445758 hasConcept C203101518 @default.
- W2783445758 hasConcept C2524010 @default.
- W2783445758 hasConcept C2780843604 @default.
- W2783445758 hasConcept C33923547 @default.
- W2783445758 hasConcept C37914503 @default.
- W2783445758 hasConcept C55637507 @default.
- W2783445758 hasConcept C68532491 @default.
- W2783445758 hasConcept C99844830 @default.
- W2783445758 hasConceptScore W2783445758C104247578 @default.
- W2783445758 hasConceptScore W2783445758C114614502 @default.
- W2783445758 hasConceptScore W2783445758C121332964 @default.
- W2783445758 hasConceptScore W2783445758C121864883 @default.
- W2783445758 hasConceptScore W2783445758C134306372 @default.
- W2783445758 hasConceptScore W2783445758C173734053 @default.
- W2783445758 hasConceptScore W2783445758C18802822 @default.
- W2783445758 hasConceptScore W2783445758C203101518 @default.
- W2783445758 hasConceptScore W2783445758C2524010 @default.
- W2783445758 hasConceptScore W2783445758C2780843604 @default.
- W2783445758 hasConceptScore W2783445758C33923547 @default.
- W2783445758 hasConceptScore W2783445758C37914503 @default.
- W2783445758 hasConceptScore W2783445758C55637507 @default.
- W2783445758 hasConceptScore W2783445758C68532491 @default.
- W2783445758 hasConceptScore W2783445758C99844830 @default.
- W2783445758 hasLocation W27834457581 @default.
- W2783445758 hasOpenAccess W2783445758 @default.
- W2783445758 hasPrimaryLocation W27834457581 @default.
- W2783445758 hasRelatedWork W1483152916 @default.
- W2783445758 hasRelatedWork W1971534322 @default.
- W2783445758 hasRelatedWork W2006376439 @default.
- W2783445758 hasRelatedWork W2023550634 @default.
- W2783445758 hasRelatedWork W2272461596 @default.
- W2783445758 hasRelatedWork W2470297075 @default.
- W2783445758 hasRelatedWork W2686545670 @default.
- W2783445758 hasRelatedWork W2766628384 @default.
- W2783445758 hasRelatedWork W3104809446 @default.
- W2783445758 hasRelatedWork W3124058497 @default.
- W2783445758 hasRelatedWork W3126861190 @default.
- W2783445758 hasRelatedWork W3130259041 @default.
- W2783445758 hasRelatedWork W3135003813 @default.
- W2783445758 hasRelatedWork W3173392406 @default.
- W2783445758 hasRelatedWork W3176856489 @default.
- W2783445758 hasRelatedWork W3200180946 @default.
- W2783445758 hasRelatedWork W3207460338 @default.
- W2783445758 hasRelatedWork W3213320259 @default.
- W2783445758 isParatext "false" @default.
- W2783445758 isRetracted "false" @default.
- W2783445758 magId "2783445758" @default.
- W2783445758 workType "dissertation" @default.