Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783448383> ?p ?o ?g. }
- W2783448383 abstract "Latent Dirichlet Allocation (LDA) is a widely used machine learning technique in topic modeling and data analysis. Training large LDA models on big datasets involves dynamic and irregular computation patterns and is a major challenge to both algorithm optimization and system design. In this paper, we present a comprehensive benchmarking of our novel synchronized LDA training system HarpLDA+ based on Hadoop and Java. It demonstrates impressive performance when compared to three other MPI/C++ based state-of-the-art systems, which are LightLDA, F+NomadLDA, and WarpLDA. HarpLDA+ uses optimized collective communication with a timer control for load balance, leading to stable scalability in both shared-memory and distributed systems. We demonstrate in the experiments that HarpLDA+ is effective in reducing synchronization and communication overhead and outperforms the other three LDA training systems." @default.
- W2783448383 created "2018-01-26" @default.
- W2783448383 creator A5004864004 @default.
- W2783448383 creator A5007822092 @default.
- W2783448383 creator A5010626339 @default.
- W2783448383 creator A5011556020 @default.
- W2783448383 creator A5028443060 @default.
- W2783448383 creator A5031145531 @default.
- W2783448383 creator A5037265339 @default.
- W2783448383 creator A5063520476 @default.
- W2783448383 creator A5065231770 @default.
- W2783448383 creator A5072941357 @default.
- W2783448383 creator A5081468884 @default.
- W2783448383 creator A5089836263 @default.
- W2783448383 date "2017-12-01" @default.
- W2783448383 modified "2023-09-27" @default.
- W2783448383 title "HarpLDA+: Optimizing latent dirichlet allocation for parallel efficiency" @default.
- W2783448383 cites W1546359014 @default.
- W2783448383 cites W1609010894 @default.
- W2783448383 cites W1650067024 @default.
- W2783448383 cites W1880262756 @default.
- W2783448383 cites W2001082470 @default.
- W2783448383 cites W2041517243 @default.
- W2783448383 cites W2052261215 @default.
- W2783448383 cites W2078670469 @default.
- W2783448383 cites W2083842231 @default.
- W2783448383 cites W2087937280 @default.
- W2783448383 cites W2107469355 @default.
- W2783448383 cites W2113547287 @default.
- W2783448383 cites W2116137244 @default.
- W2783448383 cites W2118034653 @default.
- W2783448383 cites W2121966774 @default.
- W2783448383 cites W2132737349 @default.
- W2783448383 cites W2138996412 @default.
- W2783448383 cites W2145702984 @default.
- W2783448383 cites W2150731624 @default.
- W2783448383 cites W2335835108 @default.
- W2783448383 cites W2465468379 @default.
- W2783448383 cites W2963491860 @default.
- W2783448383 cites W2963558938 @default.
- W2783448383 doi "https://doi.org/10.1109/bigdata.2017.8257932" @default.
- W2783448383 hasPublicationYear "2017" @default.
- W2783448383 type Work @default.
- W2783448383 sameAs 2783448383 @default.
- W2783448383 citedByCount "3" @default.
- W2783448383 countsByYear W27834483832018 @default.
- W2783448383 countsByYear W27834483832019 @default.
- W2783448383 countsByYear W27834483832021 @default.
- W2783448383 crossrefType "proceedings-article" @default.
- W2783448383 hasAuthorship W2783448383A5004864004 @default.
- W2783448383 hasAuthorship W2783448383A5007822092 @default.
- W2783448383 hasAuthorship W2783448383A5010626339 @default.
- W2783448383 hasAuthorship W2783448383A5011556020 @default.
- W2783448383 hasAuthorship W2783448383A5028443060 @default.
- W2783448383 hasAuthorship W2783448383A5031145531 @default.
- W2783448383 hasAuthorship W2783448383A5037265339 @default.
- W2783448383 hasAuthorship W2783448383A5063520476 @default.
- W2783448383 hasAuthorship W2783448383A5065231770 @default.
- W2783448383 hasAuthorship W2783448383A5072941357 @default.
- W2783448383 hasAuthorship W2783448383A5081468884 @default.
- W2783448383 hasAuthorship W2783448383A5089836263 @default.
- W2783448383 hasConcept C111919701 @default.
- W2783448383 hasConcept C119857082 @default.
- W2783448383 hasConcept C120314980 @default.
- W2783448383 hasConcept C124101348 @default.
- W2783448383 hasConcept C127162648 @default.
- W2783448383 hasConcept C144133560 @default.
- W2783448383 hasConcept C154945302 @default.
- W2783448383 hasConcept C162853370 @default.
- W2783448383 hasConcept C171686336 @default.
- W2783448383 hasConcept C173608175 @default.
- W2783448383 hasConcept C2778562939 @default.
- W2783448383 hasConcept C2779960059 @default.
- W2783448383 hasConcept C31258907 @default.
- W2783448383 hasConcept C41008148 @default.
- W2783448383 hasConcept C48044578 @default.
- W2783448383 hasConcept C500882744 @default.
- W2783448383 hasConcept C548217200 @default.
- W2783448383 hasConcept C75684735 @default.
- W2783448383 hasConcept C77088390 @default.
- W2783448383 hasConcept C86251818 @default.
- W2783448383 hasConceptScore W2783448383C111919701 @default.
- W2783448383 hasConceptScore W2783448383C119857082 @default.
- W2783448383 hasConceptScore W2783448383C120314980 @default.
- W2783448383 hasConceptScore W2783448383C124101348 @default.
- W2783448383 hasConceptScore W2783448383C127162648 @default.
- W2783448383 hasConceptScore W2783448383C144133560 @default.
- W2783448383 hasConceptScore W2783448383C154945302 @default.
- W2783448383 hasConceptScore W2783448383C162853370 @default.
- W2783448383 hasConceptScore W2783448383C171686336 @default.
- W2783448383 hasConceptScore W2783448383C173608175 @default.
- W2783448383 hasConceptScore W2783448383C2778562939 @default.
- W2783448383 hasConceptScore W2783448383C2779960059 @default.
- W2783448383 hasConceptScore W2783448383C31258907 @default.
- W2783448383 hasConceptScore W2783448383C41008148 @default.
- W2783448383 hasConceptScore W2783448383C48044578 @default.
- W2783448383 hasConceptScore W2783448383C500882744 @default.
- W2783448383 hasConceptScore W2783448383C548217200 @default.
- W2783448383 hasConceptScore W2783448383C75684735 @default.
- W2783448383 hasConceptScore W2783448383C77088390 @default.