Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783448695> ?p ?o ?g. }
- W2783448695 endingPage "5" @default.
- W2783448695 startingPage "1" @default.
- W2783448695 abstract "Improving oxygen electrochemistry through nanoscopic confinement has recently been highlighted as a promising strategy. In-depth understanding the role of confinement is therefore required. In this study, we simulate the oxygen evolution reaction (OER) on iron oxide nanoclusters under confinement of (7,7) and (8,8) armchair carbon nanotubes (CNTs). The free energies of the four proton coupled electron transfer (PCET) steps and the OER overpotentials are calculated. The Fe4O6 nanocluster confined in (7,7) CNT is found to be the most active for OER among the systems considered in this work. This leads to an increase in catalytic efficiency of OER compared to the hematite (110) surface, which was reported recently as an active surface towards OER. The calculated results show that the OER overpotential depends strongly on the magnetic properties of the iron oxide nanocluster. These findings are helpful for experimental design of efficient catalyst for water splitting applications." @default.
- W2783448695 created "2018-01-26" @default.
- W2783448695 creator A5022560236 @default.
- W2783448695 creator A5059888725 @default.
- W2783448695 creator A5060002817 @default.
- W2783448695 creator A5071907234 @default.
- W2783448695 date "2018-05-01" @default.
- W2783448695 modified "2023-10-14" @default.
- W2783448695 title "Oxygen evolution reaction in nanoconfined carbon nanotubes" @default.
- W2783448695 cites W1866520696 @default.
- W2783448695 cites W1963597491 @default.
- W2783448695 cites W1965781747 @default.
- W2783448695 cites W1970127494 @default.
- W2783448695 cites W1971113415 @default.
- W2783448695 cites W1974282192 @default.
- W2783448695 cites W1976555219 @default.
- W2783448695 cites W1979544533 @default.
- W2783448695 cites W1981368803 @default.
- W2783448695 cites W1982153238 @default.
- W2783448695 cites W2002721385 @default.
- W2783448695 cites W2005879735 @default.
- W2783448695 cites W2007395042 @default.
- W2783448695 cites W2009287075 @default.
- W2783448695 cites W2025427120 @default.
- W2783448695 cites W2026586980 @default.
- W2783448695 cites W2030948171 @default.
- W2783448695 cites W2031611994 @default.
- W2783448695 cites W2033274629 @default.
- W2783448695 cites W2034433904 @default.
- W2783448695 cites W2042015793 @default.
- W2783448695 cites W2048017909 @default.
- W2783448695 cites W2053753071 @default.
- W2783448695 cites W2054551180 @default.
- W2783448695 cites W2067944391 @default.
- W2783448695 cites W2069949184 @default.
- W2783448695 cites W2081197568 @default.
- W2783448695 cites W2081695123 @default.
- W2783448695 cites W2083222334 @default.
- W2783448695 cites W2087434238 @default.
- W2783448695 cites W2114689076 @default.
- W2783448695 cites W2123661814 @default.
- W2783448695 cites W2136075964 @default.
- W2783448695 cites W2146546128 @default.
- W2783448695 cites W2147709613 @default.
- W2783448695 cites W2148168487 @default.
- W2783448695 cites W2174909390 @default.
- W2783448695 cites W2273595971 @default.
- W2783448695 cites W2309938009 @default.
- W2783448695 cites W2318317714 @default.
- W2783448695 cites W2318882985 @default.
- W2783448695 cites W2321406198 @default.
- W2783448695 cites W2324388357 @default.
- W2783448695 cites W2328851052 @default.
- W2783448695 cites W2338925365 @default.
- W2783448695 cites W2396732428 @default.
- W2783448695 cites W2436295954 @default.
- W2783448695 cites W2462085098 @default.
- W2783448695 cites W2478697358 @default.
- W2783448695 cites W2507813663 @default.
- W2783448695 cites W2594047346 @default.
- W2783448695 cites W2604662090 @default.
- W2783448695 cites W2744483003 @default.
- W2783448695 cites W2765427975 @default.
- W2783448695 cites W4241456496 @default.
- W2783448695 cites W4378735770 @default.
- W2783448695 doi "https://doi.org/10.1016/j.physe.2018.01.003" @default.
- W2783448695 hasPublicationYear "2018" @default.
- W2783448695 type Work @default.
- W2783448695 sameAs 2783448695 @default.
- W2783448695 citedByCount "9" @default.
- W2783448695 countsByYear W27834486952018 @default.
- W2783448695 countsByYear W27834486952019 @default.
- W2783448695 countsByYear W27834486952021 @default.
- W2783448695 countsByYear W27834486952022 @default.
- W2783448695 crossrefType "journal-article" @default.
- W2783448695 hasAuthorship W2783448695A5022560236 @default.
- W2783448695 hasAuthorship W2783448695A5059888725 @default.
- W2783448695 hasAuthorship W2783448695A5060002817 @default.
- W2783448695 hasAuthorship W2783448695A5071907234 @default.
- W2783448695 hasConcept C123669783 @default.
- W2783448695 hasConcept C127413603 @default.
- W2783448695 hasConcept C135473242 @default.
- W2783448695 hasConcept C147789679 @default.
- W2783448695 hasConcept C159467904 @default.
- W2783448695 hasConcept C161790260 @default.
- W2783448695 hasConcept C171250308 @default.
- W2783448695 hasConcept C17525397 @default.
- W2783448695 hasConcept C178790620 @default.
- W2783448695 hasConcept C185592680 @default.
- W2783448695 hasConcept C186460083 @default.
- W2783448695 hasConcept C191897082 @default.
- W2783448695 hasConcept C192562407 @default.
- W2783448695 hasConcept C2778402822 @default.
- W2783448695 hasConcept C2779131772 @default.
- W2783448695 hasConcept C2779851234 @default.
- W2783448695 hasConcept C35590869 @default.
- W2783448695 hasConcept C42360764 @default.
- W2783448695 hasConcept C513720949 @default.