Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783452787> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2783452787 abstract "Anomaly detection is the process of discovering some anomalous behaviour in the real-time operation of a system. It is a difficult task, since in a general case (multivariate anomaly detection) an anomaly can be related to the behaviour of several parameters which are not necessarily behaving anomalously per se, but their (complex) relation is anomalous (not usual/normal). This implies the need for a very efficient modeling of the normal behaviour in order to know what should be treated as anomalous/outlier/unusual. Consequently, classical model-driven approaches, due to their focus on the selected parameters for creating models, are not able to model the behaviour of the whole system. This is why data-driven approaches for anomaly detection are getting even more important for the industry use cases where hundreds (thousands) of parameters should be taken into account. However, current approaches are usually focused on the univariate anomaly detection (or some variations of it), so without observing the entire space of relations since the computation is very complex. In this paper we present a novel approach for the multivariate anomaly detection that is based on modeling and managing the streams of variations in a multidimensional space. The main advantage of this approach is the possibility to observe the relations between variations in a large set of parameters and create clusters of “normal/usual” variations. In order to ensure scaling, which is one of the most challenging requirements, the approach is based on the usage of the big data technologies for realizing data analytics tasks/calculations. The approach is realized as a part of D2Lab (Data Diagnostics Laboratory) framework and has been applied in several industrial use cases. In this paper we present an interesting usage for the anomaly detection in the process of functional testing of home appliances (in particular case refrigerators) after manufacturing/assembling process. It has been done for a big vendor (Whirlpool), who expects huge saving in testing and improved customer satisfaction from this approach." @default.
- W2783452787 created "2018-01-26" @default.
- W2783452787 creator A5000055808 @default.
- W2783452787 creator A5031448088 @default.
- W2783452787 creator A5082959906 @default.
- W2783452787 date "2017-12-01" @default.
- W2783452787 modified "2023-09-27" @default.
- W2783452787 title "A data-driven approach for multivariate contextualized anomaly detection: Industry use case" @default.
- W2783452787 cites W1966105052 @default.
- W2783452787 cites W2036021116 @default.
- W2783452787 cites W2037605258 @default.
- W2783452787 cites W2077517973 @default.
- W2783452787 cites W2101623967 @default.
- W2783452787 cites W2111184007 @default.
- W2783452787 cites W2122646361 @default.
- W2783452787 cites W2132987460 @default.
- W2783452787 cites W2154322090 @default.
- W2783452787 cites W2173213060 @default.
- W2783452787 cites W2378298425 @default.
- W2783452787 cites W2533784697 @default.
- W2783452787 cites W4245050711 @default.
- W2783452787 cites W92454686 @default.
- W2783452787 doi "https://doi.org/10.1109/bigdata.2017.8258090" @default.
- W2783452787 hasPublicationYear "2017" @default.
- W2783452787 type Work @default.
- W2783452787 sameAs 2783452787 @default.
- W2783452787 citedByCount "5" @default.
- W2783452787 countsByYear W27834527872018 @default.
- W2783452787 countsByYear W27834527872019 @default.
- W2783452787 countsByYear W27834527872022 @default.
- W2783452787 countsByYear W27834527872023 @default.
- W2783452787 crossrefType "proceedings-article" @default.
- W2783452787 hasAuthorship W2783452787A5000055808 @default.
- W2783452787 hasAuthorship W2783452787A5031448088 @default.
- W2783452787 hasAuthorship W2783452787A5082959906 @default.
- W2783452787 hasBestOaLocation W27834527872 @default.
- W2783452787 hasConcept C119857082 @default.
- W2783452787 hasConcept C121332964 @default.
- W2783452787 hasConcept C124101348 @default.
- W2783452787 hasConcept C12997251 @default.
- W2783452787 hasConcept C154945302 @default.
- W2783452787 hasConcept C161584116 @default.
- W2783452787 hasConcept C199163554 @default.
- W2783452787 hasConcept C2524010 @default.
- W2783452787 hasConcept C26873012 @default.
- W2783452787 hasConcept C33923547 @default.
- W2783452787 hasConcept C41008148 @default.
- W2783452787 hasConcept C67186912 @default.
- W2783452787 hasConcept C739882 @default.
- W2783452787 hasConcept C75684735 @default.
- W2783452787 hasConcept C77088390 @default.
- W2783452787 hasConcept C79158427 @default.
- W2783452787 hasConcept C79337645 @default.
- W2783452787 hasConcept C99844830 @default.
- W2783452787 hasConceptScore W2783452787C119857082 @default.
- W2783452787 hasConceptScore W2783452787C121332964 @default.
- W2783452787 hasConceptScore W2783452787C124101348 @default.
- W2783452787 hasConceptScore W2783452787C12997251 @default.
- W2783452787 hasConceptScore W2783452787C154945302 @default.
- W2783452787 hasConceptScore W2783452787C161584116 @default.
- W2783452787 hasConceptScore W2783452787C199163554 @default.
- W2783452787 hasConceptScore W2783452787C2524010 @default.
- W2783452787 hasConceptScore W2783452787C26873012 @default.
- W2783452787 hasConceptScore W2783452787C33923547 @default.
- W2783452787 hasConceptScore W2783452787C41008148 @default.
- W2783452787 hasConceptScore W2783452787C67186912 @default.
- W2783452787 hasConceptScore W2783452787C739882 @default.
- W2783452787 hasConceptScore W2783452787C75684735 @default.
- W2783452787 hasConceptScore W2783452787C77088390 @default.
- W2783452787 hasConceptScore W2783452787C79158427 @default.
- W2783452787 hasConceptScore W2783452787C79337645 @default.
- W2783452787 hasConceptScore W2783452787C99844830 @default.
- W2783452787 hasLocation W27834527871 @default.
- W2783452787 hasLocation W27834527872 @default.
- W2783452787 hasOpenAccess W2783452787 @default.
- W2783452787 hasPrimaryLocation W27834527871 @default.
- W2783452787 hasRelatedWork W1506408510 @default.
- W2783452787 hasRelatedWork W2010489518 @default.
- W2783452787 hasRelatedWork W2048159935 @default.
- W2783452787 hasRelatedWork W2770458211 @default.
- W2783452787 hasRelatedWork W2886736558 @default.
- W2783452787 hasRelatedWork W3142821313 @default.
- W2783452787 hasRelatedWork W3211276548 @default.
- W2783452787 hasRelatedWork W4312874833 @default.
- W2783452787 hasRelatedWork W4380568901 @default.
- W2783452787 hasRelatedWork W961884 @default.
- W2783452787 isParatext "false" @default.
- W2783452787 isRetracted "false" @default.
- W2783452787 magId "2783452787" @default.
- W2783452787 workType "article" @default.