Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783457203> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2783457203 abstract "In times of increasing connectivity, complexity and automation safety is also becoming more demanding. As a result of these developments, the number of alarms for the individual operator increases and leads to mental overload. This overload caused by alarm floods is an enormous safety risk. By reducing this risk, it is not only possible to increase the safety for humans and machines, but also to correct the failure at an early stage. This saves money and reduces outage time. In this paper we present an approach using a Bayesian network to identify the root cause of an alarm flood. The root cause is responsible for a sequence of alarms. The causal dependencies between the alarms are represented with a Bayesian network, which serves as a causal model. Based on this causal model the root cause of an alarm flood can be determined using inference. There exist different methods to learn the structure of a Bayesian network. To investigate which method suites the best for the purpose of alarm flood reduction, one algorithm from each method is selected. We evaluated these algorithms with a dataset, which is recorded from a demonstrator of a manufacturing plant in the SmartFactoryOWL." @default.
- W2783457203 created "2018-01-26" @default.
- W2783457203 creator A5012395966 @default.
- W2783457203 creator A5028721334 @default.
- W2783457203 date "2017-09-01" @default.
- W2783457203 modified "2023-10-16" @default.
- W2783457203 title "Structure learning methods for Bayesian networks to reduce alarm floods by identifying the root cause" @default.
- W2783457203 cites W1976397943 @default.
- W2783457203 cites W2070004594 @default.
- W2783457203 cites W2075402100 @default.
- W2783457203 cites W2107014203 @default.
- W2783457203 cites W2123466849 @default.
- W2783457203 cites W2134330995 @default.
- W2783457203 cites W2165190832 @default.
- W2783457203 cites W2303953817 @default.
- W2783457203 cites W2328630450 @default.
- W2783457203 cites W2462666973 @default.
- W2783457203 cites W2545717598 @default.
- W2783457203 cites W4213136831 @default.
- W2783457203 cites W586589663 @default.
- W2783457203 doi "https://doi.org/10.1109/etfa.2017.8247692" @default.
- W2783457203 hasPublicationYear "2017" @default.
- W2783457203 type Work @default.
- W2783457203 sameAs 2783457203 @default.
- W2783457203 citedByCount "18" @default.
- W2783457203 countsByYear W27834572032017 @default.
- W2783457203 countsByYear W27834572032018 @default.
- W2783457203 countsByYear W27834572032019 @default.
- W2783457203 countsByYear W27834572032020 @default.
- W2783457203 countsByYear W27834572032021 @default.
- W2783457203 countsByYear W27834572032022 @default.
- W2783457203 countsByYear W27834572032023 @default.
- W2783457203 crossrefType "proceedings-article" @default.
- W2783457203 hasAuthorship W2783457203A5012395966 @default.
- W2783457203 hasAuthorship W2783457203A5028721334 @default.
- W2783457203 hasConcept C107673813 @default.
- W2783457203 hasConcept C119857082 @default.
- W2783457203 hasConcept C127413603 @default.
- W2783457203 hasConcept C130963320 @default.
- W2783457203 hasConcept C138885662 @default.
- W2783457203 hasConcept C146978453 @default.
- W2783457203 hasConcept C154945302 @default.
- W2783457203 hasConcept C171078966 @default.
- W2783457203 hasConcept C200601418 @default.
- W2783457203 hasConcept C2779119184 @default.
- W2783457203 hasConcept C33724603 @default.
- W2783457203 hasConcept C41008148 @default.
- W2783457203 hasConcept C41895202 @default.
- W2783457203 hasConcept C84945661 @default.
- W2783457203 hasConceptScore W2783457203C107673813 @default.
- W2783457203 hasConceptScore W2783457203C119857082 @default.
- W2783457203 hasConceptScore W2783457203C127413603 @default.
- W2783457203 hasConceptScore W2783457203C130963320 @default.
- W2783457203 hasConceptScore W2783457203C138885662 @default.
- W2783457203 hasConceptScore W2783457203C146978453 @default.
- W2783457203 hasConceptScore W2783457203C154945302 @default.
- W2783457203 hasConceptScore W2783457203C171078966 @default.
- W2783457203 hasConceptScore W2783457203C200601418 @default.
- W2783457203 hasConceptScore W2783457203C2779119184 @default.
- W2783457203 hasConceptScore W2783457203C33724603 @default.
- W2783457203 hasConceptScore W2783457203C41008148 @default.
- W2783457203 hasConceptScore W2783457203C41895202 @default.
- W2783457203 hasConceptScore W2783457203C84945661 @default.
- W2783457203 hasLocation W27834572031 @default.
- W2783457203 hasOpenAccess W2783457203 @default.
- W2783457203 hasPrimaryLocation W27834572031 @default.
- W2783457203 hasRelatedWork W1521073412 @default.
- W2783457203 hasRelatedWork W2123466849 @default.
- W2783457203 hasRelatedWork W2155316881 @default.
- W2783457203 hasRelatedWork W2161830378 @default.
- W2783457203 hasRelatedWork W2783457203 @default.
- W2783457203 hasRelatedWork W2888633928 @default.
- W2783457203 hasRelatedWork W2966340545 @default.
- W2783457203 hasRelatedWork W3143002795 @default.
- W2783457203 hasRelatedWork W4234195105 @default.
- W2783457203 hasRelatedWork W4292794137 @default.
- W2783457203 isParatext "false" @default.
- W2783457203 isRetracted "false" @default.
- W2783457203 magId "2783457203" @default.
- W2783457203 workType "article" @default.