Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783502527> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2783502527 abstract "In recent years, turbine designers have relied more and more on 3D-CFD to come up with new and innovative airfoil designs. While individual CFD simulations are quite affordable nowadays, especially when used in aero optimization, where often thousands of CFD runs are required, the overall cost is still significant. In comparison, 2D-CFD simulations (Low Fidelity, LoFi) on multiple radially stacked airfoil sections (quasi-3D) are much faster, but less accurate because secondary flow effects are neglected. However, if HiFi and LoFi re-sults (e.g. aerodynamic efficiency) are reasonably well correlated, multi-fidelity surrogate models, which are constructed from a small number of HiFi and LoFi results, can offer a good compromise. Once the surrogate model is available, it allows to approximate HiFi results representing for example different geometry variations based on the correspond-ing LoFi results, thereby eliminating the need for further HiFi computations. Thus the multi-fidelity approach can be used to speed up airfoil optimization. In this paper the applicability of (gappy) proper orthogonal decomposition (POD, GPOD) for building a multi-fidelity surrogate model is presented and compared to the widely-used kriging based surrogate models from a industrial point of view. As the name suggests, GPOD is based on the decomposition of the HiFi and LoFi computational domain into orthogonal basis functions. In contrast, kriging based surrogate models are built based on the differences in the output values (e.g. efficiency) from the HiFi and LoFi simulations. Both methods are compared in terms of accuracy of the predicted HiFi output values. In addition, the dependency between the accuracy of prediction and the number of HiFi simulations required for creating the surrogate model is given. The ideal surrogate method would provide a high level of accuracy while requiring only few HiFi evaluations. The surrogate models are evaluated for different geometry variations that are not included in the set used for building the surrogate models. The analysis is carried out for a number of turbine airfoils subject to different flow regimes, namely a gas turbine second and fourth stage vane and blade. It is found, that for the examined cases, the GPOD method gives better predictions while requiring fewer HiFi simulations for creating the surrogate model." @default.
- W2783502527 created "2018-01-26" @default.
- W2783502527 creator A5016886718 @default.
- W2783502527 creator A5078488993 @default.
- W2783502527 creator A5081160425 @default.
- W2783502527 date "2017-01-01" @default.
- W2783502527 modified "2023-09-23" @default.
- W2783502527 title "Multi-Fidelity Surrogate Models for Predicting the Aerodynamic Performance of Turbine Airfoils" @default.
- W2783502527 cites W1498134207 @default.
- W2783502527 cites W1510052597 @default.
- W2783502527 cites W1595797227 @default.
- W2783502527 cites W1840389249 @default.
- W2783502527 cites W1977046327 @default.
- W2783502527 cites W1982886636 @default.
- W2783502527 cites W1993271327 @default.
- W2783502527 cites W2000314422 @default.
- W2783502527 cites W2010157288 @default.
- W2783502527 cites W2018044188 @default.
- W2783502527 cites W2019120493 @default.
- W2783502527 cites W2053766781 @default.
- W2783502527 cites W2058047895 @default.
- W2783502527 cites W2073016592 @default.
- W2783502527 cites W2077271040 @default.
- W2783502527 cites W2112372720 @default.
- W2783502527 cites W2120101088 @default.
- W2783502527 cites W2130259898 @default.
- W2783502527 cites W2147836374 @default.
- W2783502527 cites W2151238122 @default.
- W2783502527 cites W2169316026 @default.
- W2783502527 cites W575741564 @default.
- W2783502527 doi "https://doi.org/10.29008/etc2017-164" @default.
- W2783502527 hasPublicationYear "2017" @default.
- W2783502527 type Work @default.
- W2783502527 sameAs 2783502527 @default.
- W2783502527 citedByCount "1" @default.
- W2783502527 countsByYear W27835025272018 @default.
- W2783502527 crossrefType "proceedings-article" @default.
- W2783502527 hasAuthorship W2783502527A5016886718 @default.
- W2783502527 hasAuthorship W2783502527A5078488993 @default.
- W2783502527 hasAuthorship W2783502527A5081160425 @default.
- W2783502527 hasBestOaLocation W27835025271 @default.
- W2783502527 hasConcept C112124176 @default.
- W2783502527 hasConcept C11413529 @default.
- W2783502527 hasConcept C119857082 @default.
- W2783502527 hasConcept C126255220 @default.
- W2783502527 hasConcept C127413603 @default.
- W2783502527 hasConcept C131675550 @default.
- W2783502527 hasConcept C13393347 @default.
- W2783502527 hasConcept C146978453 @default.
- W2783502527 hasConcept C1633027 @default.
- W2783502527 hasConcept C2776459999 @default.
- W2783502527 hasConcept C2778449969 @default.
- W2783502527 hasConcept C33923547 @default.
- W2783502527 hasConcept C41008148 @default.
- W2783502527 hasConcept C45374587 @default.
- W2783502527 hasConcept C76155785 @default.
- W2783502527 hasConceptScore W2783502527C112124176 @default.
- W2783502527 hasConceptScore W2783502527C11413529 @default.
- W2783502527 hasConceptScore W2783502527C119857082 @default.
- W2783502527 hasConceptScore W2783502527C126255220 @default.
- W2783502527 hasConceptScore W2783502527C127413603 @default.
- W2783502527 hasConceptScore W2783502527C131675550 @default.
- W2783502527 hasConceptScore W2783502527C13393347 @default.
- W2783502527 hasConceptScore W2783502527C146978453 @default.
- W2783502527 hasConceptScore W2783502527C1633027 @default.
- W2783502527 hasConceptScore W2783502527C2776459999 @default.
- W2783502527 hasConceptScore W2783502527C2778449969 @default.
- W2783502527 hasConceptScore W2783502527C33923547 @default.
- W2783502527 hasConceptScore W2783502527C41008148 @default.
- W2783502527 hasConceptScore W2783502527C45374587 @default.
- W2783502527 hasConceptScore W2783502527C76155785 @default.
- W2783502527 hasLocation W27835025271 @default.
- W2783502527 hasOpenAccess W2783502527 @default.
- W2783502527 hasPrimaryLocation W27835025271 @default.
- W2783502527 hasRelatedWork W196708753 @default.
- W2783502527 hasRelatedWork W2086901383 @default.
- W2783502527 hasRelatedWork W2124769489 @default.
- W2783502527 hasRelatedWork W2312222662 @default.
- W2783502527 hasRelatedWork W2317237123 @default.
- W2783502527 hasRelatedWork W2438948463 @default.
- W2783502527 hasRelatedWork W2499743226 @default.
- W2783502527 hasRelatedWork W2787239890 @default.
- W2783502527 hasRelatedWork W2888263473 @default.
- W2783502527 hasRelatedWork W2890262074 @default.
- W2783502527 hasRelatedWork W2898266816 @default.
- W2783502527 hasRelatedWork W2954338922 @default.
- W2783502527 hasRelatedWork W2981957848 @default.
- W2783502527 hasRelatedWork W3135179230 @default.
- W2783502527 hasRelatedWork W3137886876 @default.
- W2783502527 hasRelatedWork W3148202045 @default.
- W2783502527 hasRelatedWork W3187876569 @default.
- W2783502527 hasRelatedWork W3204558379 @default.
- W2783502527 hasRelatedWork W589020986 @default.
- W2783502527 hasRelatedWork W66971415 @default.
- W2783502527 isParatext "false" @default.
- W2783502527 isRetracted "false" @default.
- W2783502527 magId "2783502527" @default.
- W2783502527 workType "article" @default.