Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783508108> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2783508108 abstract "The Industrial Internet of Things (IIoT) is quite different from the general IoT in terms of latency, bandwidth, cost, security and connectivity. Most existing IoT platforms are designed for general IoT needs, and thus cannot handle the specificities of IIoT. With the anticipated big data generation in IIoT, an open source platform capable of minimizing the amount of data being sent from the edge and at the same time, that can effectively monitor and communicate the condition of the large-scale engineering system by doing efficient real-time edge analytics is sorely needed. In this work, an industrial machine condition-monitoring open-source software database, equipped with a dictionary and small enough to fit into the memory of edge data-analytic devices is created. The database-dictionary system will prevent excessive industrial and smart grid machine data from being sent to the cloud since only fault report and requisite recommendations, sourced from the edge dictionary and database will be sent. An open source software (Python SQLite) situated on Linux operating system is used to create the edge database and the dictionary so that inter-platform portability will be achieved and most IIoT machines will be able to use the platform. Statistical analysis at the network edge using well known industrial methods such as kurtosis and skewness reveal significant differences between generated machine signal and reference signal. This database-dictionary approach is a new paradigm since it is different from legacy methods in which databases are situated only in the cloud with huge memory and servers. The open source deployment will also help to satisfy the criteria of Industrial IoT Consortium and the Open Fog Architecture." @default.
- W2783508108 created "2018-01-26" @default.
- W2783508108 creator A5016171506 @default.
- W2783508108 date "2017-12-01" @default.
- W2783508108 modified "2023-10-17" @default.
- W2783508108 title "Predictive edge computing for time series of industrial IoT and large scale critical infrastructure based on open-source software analytic of big data" @default.
- W2783508108 cites W1902882355 @default.
- W2783508108 cites W1983806141 @default.
- W2783508108 cites W1995487825 @default.
- W2783508108 cites W2041124359 @default.
- W2783508108 cites W2094547360 @default.
- W2783508108 cites W2097986641 @default.
- W2783508108 cites W2253855427 @default.
- W2783508108 cites W2264616087 @default.
- W2783508108 cites W2342653665 @default.
- W2783508108 cites W2343612790 @default.
- W2783508108 cites W2401898190 @default.
- W2783508108 cites W2416799949 @default.
- W2783508108 cites W4241264701 @default.
- W2783508108 cites W54748909 @default.
- W2783508108 doi "https://doi.org/10.1109/bigdata.2017.8258103" @default.
- W2783508108 hasPublicationYear "2017" @default.
- W2783508108 type Work @default.
- W2783508108 sameAs 2783508108 @default.
- W2783508108 citedByCount "28" @default.
- W2783508108 countsByYear W27835081082018 @default.
- W2783508108 countsByYear W27835081082019 @default.
- W2783508108 countsByYear W27835081082020 @default.
- W2783508108 countsByYear W27835081082021 @default.
- W2783508108 countsByYear W27835081082022 @default.
- W2783508108 countsByYear W27835081082023 @default.
- W2783508108 crossrefType "proceedings-article" @default.
- W2783508108 hasAuthorship W2783508108A5016171506 @default.
- W2783508108 hasConcept C111919701 @default.
- W2783508108 hasConcept C136085584 @default.
- W2783508108 hasConcept C149635348 @default.
- W2783508108 hasConcept C156731835 @default.
- W2783508108 hasConcept C176649486 @default.
- W2783508108 hasConcept C2777904410 @default.
- W2783508108 hasConcept C2778456923 @default.
- W2783508108 hasConcept C41008148 @default.
- W2783508108 hasConcept C519991488 @default.
- W2783508108 hasConcept C63000827 @default.
- W2783508108 hasConcept C75684735 @default.
- W2783508108 hasConcept C77088390 @default.
- W2783508108 hasConcept C79974875 @default.
- W2783508108 hasConcept C93996380 @default.
- W2783508108 hasConceptScore W2783508108C111919701 @default.
- W2783508108 hasConceptScore W2783508108C136085584 @default.
- W2783508108 hasConceptScore W2783508108C149635348 @default.
- W2783508108 hasConceptScore W2783508108C156731835 @default.
- W2783508108 hasConceptScore W2783508108C176649486 @default.
- W2783508108 hasConceptScore W2783508108C2777904410 @default.
- W2783508108 hasConceptScore W2783508108C2778456923 @default.
- W2783508108 hasConceptScore W2783508108C41008148 @default.
- W2783508108 hasConceptScore W2783508108C519991488 @default.
- W2783508108 hasConceptScore W2783508108C63000827 @default.
- W2783508108 hasConceptScore W2783508108C75684735 @default.
- W2783508108 hasConceptScore W2783508108C77088390 @default.
- W2783508108 hasConceptScore W2783508108C79974875 @default.
- W2783508108 hasConceptScore W2783508108C93996380 @default.
- W2783508108 hasLocation W27835081081 @default.
- W2783508108 hasOpenAccess W2783508108 @default.
- W2783508108 hasPrimaryLocation W27835081081 @default.
- W2783508108 hasRelatedWork W1584537303 @default.
- W2783508108 hasRelatedWork W1872724644 @default.
- W2783508108 hasRelatedWork W2130894091 @default.
- W2783508108 hasRelatedWork W2163854795 @default.
- W2783508108 hasRelatedWork W2750549761 @default.
- W2783508108 hasRelatedWork W28826848 @default.
- W2783508108 hasRelatedWork W3154796165 @default.
- W2783508108 hasRelatedWork W4320057486 @default.
- W2783508108 hasRelatedWork W4367156293 @default.
- W2783508108 hasRelatedWork W2122272819 @default.
- W2783508108 isParatext "false" @default.
- W2783508108 isRetracted "false" @default.
- W2783508108 magId "2783508108" @default.
- W2783508108 workType "article" @default.