Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783519229> ?p ?o ?g. }
- W2783519229 abstract "In the iterative process of experimentally probing biological networks and computationally inferring models for the networks, fast, accurate and flexible computational frameworks are needed for modeling and reverse engineering biological networks. In this dissertation, I propose a novel model to simulate gene regulatory networks using a specific type of time delayed recurrent neural networks. Also, I introduce a parameter clustering method to select groups of parameter sets from the simulations representing biologically reasonable networks. Additionally, a general purpose adaptive function is used here to decrease and study the connectivity of small gene regulatory networks modules. In this dissertation, the performance of this novel model is shown to simulate the dynamics and to infer the topology of gene regulatory networks derived from synthetic and experimental time series gene expression data. Here, I assess the quality of the inferred networks by the use of graph edit distance measurements in comparison to the synthetic and experimental benchmarks. Additionally, I compare between edition costs of the inferred networks obtained with the time delay recurrent networks and other previously described reverse engineering methods based on continuous time recurrent neural and dynamic Bayesian networks. Furthermore, I address questions of network connectivity and correlation between data fitting and inference power by simulating common experimental limitations of the reverse engineering process as incomplete and highly noisy data. The novel specific type of time delay recurrent neural networks model in combination with parameter clustering substantially improves the inference power of reverse engineered networks. Additionally, some suggestions for future improvements are discussed, particularly under the data driven perspective as the solution for modeling complex biological systems." @default.
- W2783519229 created "2018-01-26" @default.
- W2783519229 creator A5056773975 @default.
- W2783519229 date "2008-01-01" @default.
- W2783519229 modified "2023-09-24" @default.
- W2783519229 title "Reverse engineering of genetic networks with time delayed recurrent neural networks and clustering techniques" @default.
- W2783519229 cites W103930971 @default.
- W2783519229 cites W1481919380 @default.
- W2783519229 cites W1502529406 @default.
- W2783519229 cites W1508447451 @default.
- W2783519229 cites W1557270760 @default.
- W2783519229 cites W1559547793 @default.
- W2783519229 cites W1581582023 @default.
- W2783519229 cites W1592730552 @default.
- W2783519229 cites W1600033471 @default.
- W2783519229 cites W1645305843 @default.
- W2783519229 cites W172466510 @default.
- W2783519229 cites W1946177469 @default.
- W2783519229 cites W1969770714 @default.
- W2783519229 cites W1971735090 @default.
- W2783519229 cites W1974948854 @default.
- W2783519229 cites W1975210552 @default.
- W2783519229 cites W1978319180 @default.
- W2783519229 cites W1979532539 @default.
- W2783519229 cites W1987003260 @default.
- W2783519229 cites W1988416558 @default.
- W2783519229 cites W1994869675 @default.
- W2783519229 cites W1999716743 @default.
- W2783519229 cites W2008107402 @default.
- W2783519229 cites W2010586622 @default.
- W2783519229 cites W2011073350 @default.
- W2783519229 cites W2011432832 @default.
- W2783519229 cites W2025795296 @default.
- W2783519229 cites W2027175324 @default.
- W2783519229 cites W2032535902 @default.
- W2783519229 cites W2034562813 @default.
- W2783519229 cites W2036338631 @default.
- W2783519229 cites W2038622868 @default.
- W2783519229 cites W2041533382 @default.
- W2783519229 cites W2041724917 @default.
- W2783519229 cites W2047094503 @default.
- W2783519229 cites W2047941064 @default.
- W2783519229 cites W2053961182 @default.
- W2783519229 cites W2058221907 @default.
- W2783519229 cites W2063397490 @default.
- W2783519229 cites W2063800517 @default.
- W2783519229 cites W2066718232 @default.
- W2783519229 cites W2070974284 @default.
- W2783519229 cites W2082982706 @default.
- W2783519229 cites W2085061065 @default.
- W2783519229 cites W2089149934 @default.
- W2783519229 cites W2090855185 @default.
- W2783519229 cites W2095422595 @default.
- W2783519229 cites W2097263107 @default.
- W2783519229 cites W2099035403 @default.
- W2783519229 cites W2100603120 @default.
- W2783519229 cites W2101215961 @default.
- W2783519229 cites W2103453943 @default.
- W2783519229 cites W2108675631 @default.
- W2783519229 cites W2111011458 @default.
- W2783519229 cites W2117391818 @default.
- W2783519229 cites W2117813180 @default.
- W2783519229 cites W2119680932 @default.
- W2783519229 cites W2122598723 @default.
- W2783519229 cites W2125508747 @default.
- W2783519229 cites W2127218421 @default.
- W2783519229 cites W2130383124 @default.
- W2783519229 cites W2130410032 @default.
- W2783519229 cites W2135888266 @default.
- W2783519229 cites W2136834693 @default.
- W2783519229 cites W2142184151 @default.
- W2783519229 cites W2145401681 @default.
- W2783519229 cites W2145456195 @default.
- W2783519229 cites W2154755339 @default.
- W2783519229 cites W2155418451 @default.
- W2783519229 cites W2158614393 @default.
- W2783519229 cites W2159479483 @default.
- W2783519229 cites W2159675211 @default.
- W2783519229 cites W2160762309 @default.
- W2783519229 cites W2166667584 @default.
- W2783519229 cites W2167887374 @default.
- W2783519229 cites W2170984819 @default.
- W2783519229 cites W2408803199 @default.
- W2783519229 cites W2610714868 @default.
- W2783519229 cites W2611370172 @default.
- W2783519229 cites W89551800 @default.
- W2783519229 cites W92304292 @default.
- W2783519229 cites W945831800 @default.
- W2783519229 doi "https://doi.org/10.11588/heidok.00008830" @default.
- W2783519229 hasPublicationYear "2008" @default.
- W2783519229 type Work @default.
- W2783519229 sameAs 2783519229 @default.
- W2783519229 citedByCount "0" @default.
- W2783519229 crossrefType "dissertation" @default.
- W2783519229 hasAuthorship W2783519229A5056773975 @default.
- W2783519229 hasConcept C104317684 @default.
- W2783519229 hasConcept C111919701 @default.
- W2783519229 hasConcept C119857082 @default.
- W2783519229 hasConcept C124101348 @default.
- W2783519229 hasConcept C147168706 @default.