Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783537574> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2783537574 abstract "In order to optimize the operation of its nuclear power plants, the EDF's R&D department iscurrently developing a new calculation chain to simulate the nuclear reactors core with state of the art tools. These calculations require a large amount of physical data, especially the cross-sections. In the full core simulation, the number of cross-section values is of the order of several billions. These cross-sections can be represented as multivariate functions depending on several physical parameters. The determination of cross-sections is a long and complex calculation, we can therefore pre-compute them in some values of parameters (online calculations), then evaluate them at all desired points by an interpolation (online calculations). This process requires a model of cross-section reconstruction between the two steps. In order to perform a more faithful core simulation in the new EDF's chain, the cross-sections need to be better represented by taking into account new parameters. Moreover, the new chain must be able to calculate the reactor in more extensive situations than the current one. The multilinear interpolation is currently used to reconstruct cross-sections and to meet these goals. However, with this model, the number of points in its discretization increases exponentially as a function of the number of parameters, or significantly when adding points to one of the axes. Consequently, the number and time of online calculations as well as the storage size for this data become problematic. The goal of this thesis is therefore to find a new model in order to respond to the following requirements: (i)-(online) reduce the number of pre-calculations, (ii)-(online) reduce stored data size for the reconstruction and (iii)-(online) maintain (or improve) the accuracy obtained by multilinear interpolation. From a mathematical point of view, this problem involves approaching multivariate functions from their pre-calculated values. We based our research on the Tucker format - a low-rank tensor approximation in order to propose a new model called the Tucker decomposition . With this model, a multivariate function is approximated by a linear combination of tensor products of one-variate functions. These one-variate functions are constructed by a technique called higher-order singular values decomposition (a « matricization » combined with an extension of the Karhunen-Loeve decomposition). The so-called greedy algorithm is used to constitute the points related to the resolution of the coefficients in the combination of the Tucker decomposition. The results obtained show that our model satisfies the criteria required for the reduction of the data as well as the accuracy. With this model, we can eliminate a posteriori and a priori the coefficients in the Tucker decomposition in order to further reduce the data storage in online steps but without reducing significantly the accuracy." @default.
- W2783537574 created "2018-01-26" @default.
- W2783537574 creator A5080957678 @default.
- W2783537574 creator A5087894659 @default.
- W2783537574 date "2017-02-17" @default.
- W2783537574 modified "2023-09-27" @default.
- W2783537574 title "Improvement of cross section model in COCAGNE code of the calculation chain of EDF" @default.
- W2783537574 hasPublicationYear "2017" @default.
- W2783537574 type Work @default.
- W2783537574 sameAs 2783537574 @default.
- W2783537574 citedByCount "0" @default.
- W2783537574 crossrefType "dissertation" @default.
- W2783537574 hasAuthorship W2783537574A5080957678 @default.
- W2783537574 hasAuthorship W2783537574A5087894659 @default.
- W2783537574 hasConcept C111919701 @default.
- W2783537574 hasConcept C11413529 @default.
- W2783537574 hasConcept C121332964 @default.
- W2783537574 hasConcept C121684516 @default.
- W2783537574 hasConcept C126255220 @default.
- W2783537574 hasConcept C134306372 @default.
- W2783537574 hasConcept C137800194 @default.
- W2783537574 hasConcept C14036430 @default.
- W2783537574 hasConcept C177264268 @default.
- W2783537574 hasConcept C199360897 @default.
- W2783537574 hasConcept C202444582 @default.
- W2783537574 hasConcept C2776760102 @default.
- W2783537574 hasConcept C28826006 @default.
- W2783537574 hasConcept C33923547 @default.
- W2783537574 hasConcept C41008148 @default.
- W2783537574 hasConcept C502989409 @default.
- W2783537574 hasConcept C52234038 @default.
- W2783537574 hasConcept C62520636 @default.
- W2783537574 hasConcept C73000952 @default.
- W2783537574 hasConcept C78458016 @default.
- W2783537574 hasConcept C84392682 @default.
- W2783537574 hasConcept C86803240 @default.
- W2783537574 hasConcept C98045186 @default.
- W2783537574 hasConceptScore W2783537574C111919701 @default.
- W2783537574 hasConceptScore W2783537574C11413529 @default.
- W2783537574 hasConceptScore W2783537574C121332964 @default.
- W2783537574 hasConceptScore W2783537574C121684516 @default.
- W2783537574 hasConceptScore W2783537574C126255220 @default.
- W2783537574 hasConceptScore W2783537574C134306372 @default.
- W2783537574 hasConceptScore W2783537574C137800194 @default.
- W2783537574 hasConceptScore W2783537574C14036430 @default.
- W2783537574 hasConceptScore W2783537574C177264268 @default.
- W2783537574 hasConceptScore W2783537574C199360897 @default.
- W2783537574 hasConceptScore W2783537574C202444582 @default.
- W2783537574 hasConceptScore W2783537574C2776760102 @default.
- W2783537574 hasConceptScore W2783537574C28826006 @default.
- W2783537574 hasConceptScore W2783537574C33923547 @default.
- W2783537574 hasConceptScore W2783537574C41008148 @default.
- W2783537574 hasConceptScore W2783537574C502989409 @default.
- W2783537574 hasConceptScore W2783537574C52234038 @default.
- W2783537574 hasConceptScore W2783537574C62520636 @default.
- W2783537574 hasConceptScore W2783537574C73000952 @default.
- W2783537574 hasConceptScore W2783537574C78458016 @default.
- W2783537574 hasConceptScore W2783537574C84392682 @default.
- W2783537574 hasConceptScore W2783537574C86803240 @default.
- W2783537574 hasConceptScore W2783537574C98045186 @default.
- W2783537574 hasLocation W27835375741 @default.
- W2783537574 hasOpenAccess W2783537574 @default.
- W2783537574 hasPrimaryLocation W27835375741 @default.
- W2783537574 hasRelatedWork W1610971146 @default.
- W2783537574 hasRelatedWork W1845982450 @default.
- W2783537574 hasRelatedWork W1858056047 @default.
- W2783537574 hasRelatedWork W1997870068 @default.
- W2783537574 hasRelatedWork W2044679007 @default.
- W2783537574 hasRelatedWork W2082357068 @default.
- W2783537574 hasRelatedWork W2089781388 @default.
- W2783537574 hasRelatedWork W2097963541 @default.
- W2783537574 hasRelatedWork W2108910082 @default.
- W2783537574 hasRelatedWork W2182647271 @default.
- W2783537574 hasRelatedWork W2462082248 @default.
- W2783537574 hasRelatedWork W2506420273 @default.
- W2783537574 hasRelatedWork W2538389451 @default.
- W2783537574 hasRelatedWork W2742171414 @default.
- W2783537574 hasRelatedWork W2753766112 @default.
- W2783537574 hasRelatedWork W2774355461 @default.
- W2783537574 hasRelatedWork W2962947392 @default.
- W2783537574 hasRelatedWork W2973597075 @default.
- W2783537574 hasRelatedWork W3159159236 @default.
- W2783537574 hasRelatedWork W76330554 @default.
- W2783537574 isParatext "false" @default.
- W2783537574 isRetracted "false" @default.
- W2783537574 magId "2783537574" @default.
- W2783537574 workType "dissertation" @default.