Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783606427> ?p ?o ?g. }
- W2783606427 endingPage "111" @default.
- W2783606427 startingPage "101" @default.
- W2783606427 abstract "Deep directed generative models have attracted much attention recently due to their generative modeling nature and powerful data representation ability. In this article, we review different structures of deep directed generative models and the learning and inference algorithms associated with the structures. We focus on a specific structure that consists of layers of Bayesian networks (BNs) due to the property of capturing inherent and rich dependencies among latent variables. The major difficulty of learning and inference with deep directed models with many latent variables is the intractable inference due to the dependencies among the latent variables and the exponential number of latent variable configurations. Current solutions use variational methods, often through an auxiliary network, to approximate the posterior probability inference. In contrast, inference can also be performed directly without using any auxiliary network to maximally preserve the dependencies among the latent variables. Specifically, by exploiting the sparse representation with the latent space, max-max instead of maxsum operation can be used to overcome the exponential number of latent configurations. Furthermore, the max-max operation and augmented coordinate ascent (AugCA) are applied to both supervised and unsupervised learning as well as to various inference. Quantitative evaluations on benchmark data sets of different models are given for both data representation and feature-learning tasks." @default.
- W2783606427 created "2018-01-26" @default.
- W2783606427 creator A5038942290 @default.
- W2783606427 creator A5076346273 @default.
- W2783606427 creator A5079482662 @default.
- W2783606427 date "2018-01-01" @default.
- W2783606427 modified "2023-10-14" @default.
- W2783606427 title "The Deep Regression Bayesian Network and Its Applications: Probabilistic Deep Learning for Computer Vision" @default.
- W2783606427 cites W1507070875 @default.
- W2783606427 cites W1520448186 @default.
- W2783606427 cites W189596042 @default.
- W2783606427 cites W1959608418 @default.
- W2783606427 cites W1993845689 @default.
- W2783606427 cites W1996726072 @default.
- W2783606427 cites W2019177772 @default.
- W2783606427 cites W2054814877 @default.
- W2783606427 cites W2076017598 @default.
- W2783606427 cites W2083380015 @default.
- W2783606427 cites W2087806427 @default.
- W2783606427 cites W2095506523 @default.
- W2783606427 cites W2099471712 @default.
- W2783606427 cites W2100495367 @default.
- W2783606427 cites W2110886576 @default.
- W2783606427 cites W2121927366 @default.
- W2783606427 cites W2122262818 @default.
- W2783606427 cites W2131628350 @default.
- W2783606427 cites W2131686571 @default.
- W2783606427 cites W2136922672 @default.
- W2783606427 cites W2140687824 @default.
- W2783606427 cites W2148464528 @default.
- W2783606427 cites W2157002241 @default.
- W2783606427 cites W2170678468 @default.
- W2783606427 cites W2172275395 @default.
- W2783606427 cites W2553374874 @default.
- W2783606427 cites W2739517340 @default.
- W2783606427 cites W2952673310 @default.
- W2783606427 cites W2962897886 @default.
- W2783606427 cites W2963173382 @default.
- W2783606427 cites W2963971375 @default.
- W2783606427 cites W2964167449 @default.
- W2783606427 doi "https://doi.org/10.1109/msp.2017.2763440" @default.
- W2783606427 hasPublicationYear "2018" @default.
- W2783606427 type Work @default.
- W2783606427 sameAs 2783606427 @default.
- W2783606427 citedByCount "53" @default.
- W2783606427 countsByYear W27836064272018 @default.
- W2783606427 countsByYear W27836064272019 @default.
- W2783606427 countsByYear W27836064272020 @default.
- W2783606427 countsByYear W27836064272021 @default.
- W2783606427 countsByYear W27836064272022 @default.
- W2783606427 countsByYear W27836064272023 @default.
- W2783606427 crossrefType "journal-article" @default.
- W2783606427 hasAuthorship W2783606427A5038942290 @default.
- W2783606427 hasAuthorship W2783606427A5076346273 @default.
- W2783606427 hasAuthorship W2783606427A5079482662 @default.
- W2783606427 hasConcept C107673813 @default.
- W2783606427 hasConcept C108583219 @default.
- W2783606427 hasConcept C119857082 @default.
- W2783606427 hasConcept C13280743 @default.
- W2783606427 hasConcept C138885662 @default.
- W2783606427 hasConcept C154945302 @default.
- W2783606427 hasConcept C155846161 @default.
- W2783606427 hasConcept C160234255 @default.
- W2783606427 hasConcept C167966045 @default.
- W2783606427 hasConcept C17744445 @default.
- W2783606427 hasConcept C185798385 @default.
- W2783606427 hasConcept C199539241 @default.
- W2783606427 hasConcept C205649164 @default.
- W2783606427 hasConcept C2776214188 @default.
- W2783606427 hasConcept C2776359362 @default.
- W2783606427 hasConcept C2776401178 @default.
- W2783606427 hasConcept C33724603 @default.
- W2783606427 hasConcept C39890363 @default.
- W2783606427 hasConcept C41008148 @default.
- W2783606427 hasConcept C41895202 @default.
- W2783606427 hasConcept C51167844 @default.
- W2783606427 hasConcept C65965080 @default.
- W2783606427 hasConcept C94625758 @default.
- W2783606427 hasConceptScore W2783606427C107673813 @default.
- W2783606427 hasConceptScore W2783606427C108583219 @default.
- W2783606427 hasConceptScore W2783606427C119857082 @default.
- W2783606427 hasConceptScore W2783606427C13280743 @default.
- W2783606427 hasConceptScore W2783606427C138885662 @default.
- W2783606427 hasConceptScore W2783606427C154945302 @default.
- W2783606427 hasConceptScore W2783606427C155846161 @default.
- W2783606427 hasConceptScore W2783606427C160234255 @default.
- W2783606427 hasConceptScore W2783606427C167966045 @default.
- W2783606427 hasConceptScore W2783606427C17744445 @default.
- W2783606427 hasConceptScore W2783606427C185798385 @default.
- W2783606427 hasConceptScore W2783606427C199539241 @default.
- W2783606427 hasConceptScore W2783606427C205649164 @default.
- W2783606427 hasConceptScore W2783606427C2776214188 @default.
- W2783606427 hasConceptScore W2783606427C2776359362 @default.
- W2783606427 hasConceptScore W2783606427C2776401178 @default.
- W2783606427 hasConceptScore W2783606427C33724603 @default.
- W2783606427 hasConceptScore W2783606427C39890363 @default.
- W2783606427 hasConceptScore W2783606427C41008148 @default.
- W2783606427 hasConceptScore W2783606427C41895202 @default.