Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783608172> ?p ?o ?g. }
- W2783608172 endingPage "18" @default.
- W2783608172 startingPage "1" @default.
- W2783608172 abstract "Deep-sea hydrothermal vents provide sources of geochemical materials that impact the global ocean heat and chemical budgets, and support complex biological communities. Vent effluents and larvae are dispersed and transported long distances by deep ocean currents, but these currents are largely undersampled and little is known about their variability. Submesoscale (0.1–10 km) currents are known to play an important role for the dispersion of biogeochemical materials in the ocean surface layer, but their impact for the dispersion in the deep ocean is unknown. Here, we use a series of nested regional oceanic numerical simulations with increasing resolution (from δx=6km to δx=0.75km) to investigate the structure and variability of highly-resolved deep currents over the Mid-Atlantic Ridge (MAR) and their role on the dispersion of the Lucky Strike hydrothermal vent effluents and larvae. We shed light on a submesoscale regime of oceanic turbulence over the MAR at 1500 m depth, contrasting with open-ocean – i.e., far from topographic features – regimes of turbulence, dominated by mesoscales. Impacts of submesoscale and tidal currents on larval dispersion and connectivity among vent populations are investigated by releasing neutrally buoyant Lagrangian particles at the Lucky Strike hydrothermal vent. Although the absolute dispersion is overall not sensitive to the model resolution, submesoscale currents are found to significantly increase both the horizontal and vertical relative dispersion of particles at O(1–10) km and O(1–10) days, resulting in an increased mixing of the cloud of particles. A fraction of particles are trapped in submesoscale coherent vortices, which enable transport over long time and distances. Tidal currents and internal tides do not significantly impact the horizontal relative dispersion. However, they roughly double the vertical dispersion. Specifically, particles undergo strong tidally-induced mixing close to rough topographic features, which allows them to rise up in the water column and to cross topographic obstacles. The mesoscale variability controls at first order the connectivity between hydrothermal sites and we do not have long enough simulations to conclude on the connectivity between the different MAR hydrothermal sites. However, our simulations suggest that the connectivity might be increased by submesoscale and tidal currents, which act to spread the cloud of particles and help them cross topographic barriers." @default.
- W2783608172 created "2018-01-26" @default.
- W2783608172 creator A5036365605 @default.
- W2783608172 creator A5054454538 @default.
- W2783608172 creator A5057976978 @default.
- W2783608172 creator A5062425428 @default.
- W2783608172 date "2018-03-01" @default.
- W2783608172 modified "2023-10-14" @default.
- W2783608172 title "Dispersion of deep-sea hydrothermal vent effluents and larvae by submesoscale and tidal currents" @default.
- W2783608172 cites W1499310728 @default.
- W2783608172 cites W1500850684 @default.
- W2783608172 cites W1546816274 @default.
- W2783608172 cites W1764358857 @default.
- W2783608172 cites W1970905071 @default.
- W2783608172 cites W1971504629 @default.
- W2783608172 cites W1973849829 @default.
- W2783608172 cites W1976772074 @default.
- W2783608172 cites W1979194351 @default.
- W2783608172 cites W1988242646 @default.
- W2783608172 cites W2001383747 @default.
- W2783608172 cites W2005717358 @default.
- W2783608172 cites W2009278249 @default.
- W2783608172 cites W2009531438 @default.
- W2783608172 cites W2014767268 @default.
- W2783608172 cites W2020934441 @default.
- W2783608172 cites W2021959819 @default.
- W2783608172 cites W2025113171 @default.
- W2783608172 cites W2026128738 @default.
- W2783608172 cites W2030402895 @default.
- W2783608172 cites W2035544309 @default.
- W2783608172 cites W2036848036 @default.
- W2783608172 cites W2037562619 @default.
- W2783608172 cites W2039542421 @default.
- W2783608172 cites W2045406393 @default.
- W2783608172 cites W2052178434 @default.
- W2783608172 cites W2060405276 @default.
- W2783608172 cites W2068601543 @default.
- W2783608172 cites W2070028963 @default.
- W2783608172 cites W2071874398 @default.
- W2783608172 cites W2072224206 @default.
- W2783608172 cites W2078617609 @default.
- W2783608172 cites W2082746601 @default.
- W2783608172 cites W2085615687 @default.
- W2783608172 cites W2087799679 @default.
- W2783608172 cites W2093164547 @default.
- W2783608172 cites W2093511635 @default.
- W2783608172 cites W2093745522 @default.
- W2783608172 cites W2094278027 @default.
- W2783608172 cites W2097067629 @default.
- W2783608172 cites W2100986500 @default.
- W2783608172 cites W2101418135 @default.
- W2783608172 cites W2102081944 @default.
- W2783608172 cites W2103064386 @default.
- W2783608172 cites W2104245999 @default.
- W2783608172 cites W2107027308 @default.
- W2783608172 cites W2107514648 @default.
- W2783608172 cites W2112829737 @default.
- W2783608172 cites W2113778925 @default.
- W2783608172 cites W2114686200 @default.
- W2783608172 cites W2122601151 @default.
- W2783608172 cites W2128254052 @default.
- W2783608172 cites W2134140002 @default.
- W2783608172 cites W2135124070 @default.
- W2783608172 cites W2137041056 @default.
- W2783608172 cites W2140618008 @default.
- W2783608172 cites W2143902752 @default.
- W2783608172 cites W2148497295 @default.
- W2783608172 cites W2153011500 @default.
- W2783608172 cites W2157367008 @default.
- W2783608172 cites W2159440891 @default.
- W2783608172 cites W2159488764 @default.
- W2783608172 cites W2163644280 @default.
- W2783608172 cites W2167021794 @default.
- W2783608172 cites W2167500235 @default.
- W2783608172 cites W2169664898 @default.
- W2783608172 cites W2169842902 @default.
- W2783608172 cites W2173246082 @default.
- W2783608172 cites W2174493253 @default.
- W2783608172 cites W2178939524 @default.
- W2783608172 cites W2256337651 @default.
- W2783608172 cites W2328454750 @default.
- W2783608172 cites W2398218541 @default.
- W2783608172 cites W2400488166 @default.
- W2783608172 cites W2443537370 @default.
- W2783608172 cites W2490034941 @default.
- W2783608172 cites W2517784939 @default.
- W2783608172 cites W2524453878 @default.
- W2783608172 cites W2527844710 @default.
- W2783608172 cites W2594308187 @default.
- W2783608172 cites W2610229989 @default.
- W2783608172 cites W2739478013 @default.
- W2783608172 cites W2769159063 @default.
- W2783608172 cites W2800899046 @default.
- W2783608172 cites W2964148337 @default.
- W2783608172 cites W4231178963 @default.
- W2783608172 cites W4233759112 @default.
- W2783608172 doi "https://doi.org/10.1016/j.dsr.2018.01.001" @default.
- W2783608172 hasPublicationYear "2018" @default.