Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783622423> ?p ?o ?g. }
- W2783622423 endingPage "265" @default.
- W2783622423 startingPage "225" @default.
- W2783622423 abstract "Multi-modal magnetic resonance imaging (MRI) is increasingly used in neuroscience research, as it allowed the non-invasive investigation of structure and function of the human brain in health and pathology. One of the most important applications of multi-modal MRI is the provision of vital diagnostic data for neurologic and psychiatric disorders. As traditional MRI researches using univariate analyses can only reveal disease-related structural and functional alterations at group level which limited the clinical application, and recent attention has turned toward integrating multi-modal neuroimaging and computer-aided prognosis (CAD) technology, especially machine learning, to assist clinical disease diagnose. Research in this area is growing exponentially, and therefore it is meaningful to review the current and future development of this emerging area. Hence, in this paper, based on our own studies and contributions, we review the recent advances in multi-modal MRI and CAD technologies, and their applications to assist the clinical diagnosis of three common neurologic and psychiatric disorders, namely, Alzheimer’s disease, Attention deficit/hyperactivity disorder and Tourette syndrome. We extracted multi-modal features from structural, diffusion and resting-state functional MRI, then different feature selection methods and classifiers were applied. In addition, we applied different feature fusion schemes (e.g. multiple kernel learning) to combining multi-modal features for classification. Our experiments show that using feature fusion techniques to integrate multi-modal features can yield better classification results for diseases prediction, which may outline some future directions for multi-modal neuroimaging where researchers can design more advanced methods and models for neurologic and psychiatric research." @default.
- W2783622423 created "2018-01-26" @default.
- W2783622423 creator A5025525079 @default.
- W2783622423 creator A5031936012 @default.
- W2783622423 creator A5034277211 @default.
- W2783622423 creator A5091201374 @default.
- W2783622423 date "2018-01-01" @default.
- W2783622423 modified "2023-09-22" @default.
- W2783622423 title "Computer-Aided Prognosis: Accurate Prediction of Patients with Neurologic and Psychiatric Diseases via Multi-modal MRI Analysis" @default.
- W2783622423 cites W1542975971 @default.
- W2783622423 cites W1625264912 @default.
- W2783622423 cites W1760829075 @default.
- W2783622423 cites W1968126294 @default.
- W2783622423 cites W1969959732 @default.
- W2783622423 cites W1983451956 @default.
- W2783622423 cites W1990134753 @default.
- W2783622423 cites W1992117549 @default.
- W2783622423 cites W1995571867 @default.
- W2783622423 cites W1999653836 @default.
- W2783622423 cites W2002581945 @default.
- W2783622423 cites W2003689507 @default.
- W2783622423 cites W2005211539 @default.
- W2783622423 cites W2007213925 @default.
- W2783622423 cites W2009329597 @default.
- W2783622423 cites W2009463478 @default.
- W2783622423 cites W2012555436 @default.
- W2783622423 cites W2015294597 @default.
- W2783622423 cites W2017337590 @default.
- W2783622423 cites W2022503841 @default.
- W2783622423 cites W2023981958 @default.
- W2783622423 cites W2025233620 @default.
- W2783622423 cites W2025985542 @default.
- W2783622423 cites W2035946712 @default.
- W2783622423 cites W2036557662 @default.
- W2783622423 cites W2038098373 @default.
- W2783622423 cites W2041198871 @default.
- W2783622423 cites W2042196038 @default.
- W2783622423 cites W2046557060 @default.
- W2783622423 cites W2046927424 @default.
- W2783622423 cites W2047330691 @default.
- W2783622423 cites W2058046532 @default.
- W2783622423 cites W2061637100 @default.
- W2783622423 cites W2066948860 @default.
- W2783622423 cites W2073899293 @default.
- W2783622423 cites W2075476435 @default.
- W2783622423 cites W2080919625 @default.
- W2783622423 cites W2087422905 @default.
- W2783622423 cites W2092789470 @default.
- W2783622423 cites W2097440479 @default.
- W2783622423 cites W2102695881 @default.
- W2783622423 cites W2102879004 @default.
- W2783622423 cites W2105396029 @default.
- W2783622423 cites W2106999330 @default.
- W2783622423 cites W2110747672 @default.
- W2783622423 cites W2112436745 @default.
- W2783622423 cites W2113708991 @default.
- W2783622423 cites W2121056219 @default.
- W2783622423 cites W2121519528 @default.
- W2783622423 cites W2122320288 @default.
- W2783622423 cites W2129047299 @default.
- W2783622423 cites W2129344602 @default.
- W2783622423 cites W2131339155 @default.
- W2783622423 cites W2132458496 @default.
- W2783622423 cites W2139028872 @default.
- W2783622423 cites W2142326678 @default.
- W2783622423 cites W2142900310 @default.
- W2783622423 cites W2143426320 @default.
- W2783622423 cites W2145132952 @default.
- W2783622423 cites W2148830179 @default.
- W2783622423 cites W2150667092 @default.
- W2783622423 cites W2156041726 @default.
- W2783622423 cites W2157848968 @default.
- W2783622423 cites W2157994299 @default.
- W2783622423 cites W2161444669 @default.
- W2783622423 cites W2161502085 @default.
- W2783622423 cites W2167453047 @default.
- W2783622423 cites W2167474156 @default.
- W2783622423 cites W2170765166 @default.
- W2783622423 cites W2270642624 @default.
- W2783622423 cites W2292869756 @default.
- W2783622423 cites W310817617 @default.
- W2783622423 cites W4230920194 @default.
- W2783622423 doi "https://doi.org/10.1007/978-3-319-68843-5_10" @default.
- W2783622423 hasPublicationYear "2018" @default.
- W2783622423 type Work @default.
- W2783622423 sameAs 2783622423 @default.
- W2783622423 citedByCount "1" @default.
- W2783622423 countsByYear W27836224232018 @default.
- W2783622423 crossrefType "book-chapter" @default.
- W2783622423 hasAuthorship W2783622423A5025525079 @default.
- W2783622423 hasAuthorship W2783622423A5031936012 @default.
- W2783622423 hasAuthorship W2783622423A5034277211 @default.
- W2783622423 hasAuthorship W2783622423A5091201374 @default.
- W2783622423 hasConcept C119857082 @default.
- W2783622423 hasConcept C138885662 @default.
- W2783622423 hasConcept C148483581 @default.
- W2783622423 hasConcept C154945302 @default.
- W2783622423 hasConcept C15744967 @default.