Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783646838> ?p ?o ?g. }
- W2783646838 abstract "Virtual metrology is an important tool for industrial automation. To accurately build regression models for virtual metrology, we consider semi-supervised learning where labeled data are expensive to collect, but unlabeled data are abundant. In such a scenario, due to the scarcity of labeled data, traditional single-view learning methods face the risk of overfitting. To address the overfitting issue, we develop a Partial Co-training framework, which is an extension of the original co-training approach by means of an undirected probabilistic graphical model. Unlike other co-training techniques, this model creates a partial view by shrinking the original feature space, and makes use of this partial-view to provide guidance information for improving the complete-view model. Our approach is validated with data from two manufacturing applications. The results indicate that a consistent and robust estimation is achievable with very limited labeled data." @default.
- W2783646838 created "2018-01-26" @default.
- W2783646838 creator A5021105768 @default.
- W2783646838 creator A5022526821 @default.
- W2783646838 creator A5057715671 @default.
- W2783646838 creator A5091049578 @default.
- W2783646838 date "2017-09-01" @default.
- W2783646838 modified "2023-09-26" @default.
- W2783646838 title "Partial co-training for virtual metrology" @default.
- W2783646838 cites W1579717263 @default.
- W2783646838 cites W1663973292 @default.
- W2783646838 cites W1670132599 @default.
- W2783646838 cites W1939743097 @default.
- W2783646838 cites W1998735544 @default.
- W2783646838 cites W2000304567 @default.
- W2783646838 cites W2014915963 @default.
- W2783646838 cites W2035983272 @default.
- W2783646838 cites W2037603696 @default.
- W2783646838 cites W2041453872 @default.
- W2783646838 cites W2048679005 @default.
- W2783646838 cites W2053430356 @default.
- W2783646838 cites W2085789144 @default.
- W2783646838 cites W2113242816 @default.
- W2783646838 cites W2133348086 @default.
- W2783646838 cites W2140076625 @default.
- W2783646838 cites W2154415691 @default.
- W2783646838 cites W2161638512 @default.
- W2783646838 cites W2215421138 @default.
- W2783646838 cites W2533099810 @default.
- W2783646838 cites W2534302295 @default.
- W2783646838 cites W2552956553 @default.
- W2783646838 doi "https://doi.org/10.1109/etfa.2017.8247660" @default.
- W2783646838 hasPublicationYear "2017" @default.
- W2783646838 type Work @default.
- W2783646838 sameAs 2783646838 @default.
- W2783646838 citedByCount "3" @default.
- W2783646838 countsByYear W27836468382018 @default.
- W2783646838 countsByYear W27836468382020 @default.
- W2783646838 countsByYear W27836468382021 @default.
- W2783646838 crossrefType "proceedings-article" @default.
- W2783646838 hasAuthorship W2783646838A5021105768 @default.
- W2783646838 hasAuthorship W2783646838A5022526821 @default.
- W2783646838 hasAuthorship W2783646838A5057715671 @default.
- W2783646838 hasAuthorship W2783646838A5091049578 @default.
- W2783646838 hasConcept C105795698 @default.
- W2783646838 hasConcept C115901376 @default.
- W2783646838 hasConcept C119857082 @default.
- W2783646838 hasConcept C124101348 @default.
- W2783646838 hasConcept C127413603 @default.
- W2783646838 hasConcept C138885662 @default.
- W2783646838 hasConcept C154945302 @default.
- W2783646838 hasConcept C155846161 @default.
- W2783646838 hasConcept C195766429 @default.
- W2783646838 hasConcept C22019652 @default.
- W2783646838 hasConcept C22354355 @default.
- W2783646838 hasConcept C2776401178 @default.
- W2783646838 hasConcept C2776959682 @default.
- W2783646838 hasConcept C33923547 @default.
- W2783646838 hasConcept C41008148 @default.
- W2783646838 hasConcept C41895202 @default.
- W2783646838 hasConcept C49937458 @default.
- W2783646838 hasConcept C50644808 @default.
- W2783646838 hasConcept C58973888 @default.
- W2783646838 hasConcept C78519656 @default.
- W2783646838 hasConceptScore W2783646838C105795698 @default.
- W2783646838 hasConceptScore W2783646838C115901376 @default.
- W2783646838 hasConceptScore W2783646838C119857082 @default.
- W2783646838 hasConceptScore W2783646838C124101348 @default.
- W2783646838 hasConceptScore W2783646838C127413603 @default.
- W2783646838 hasConceptScore W2783646838C138885662 @default.
- W2783646838 hasConceptScore W2783646838C154945302 @default.
- W2783646838 hasConceptScore W2783646838C155846161 @default.
- W2783646838 hasConceptScore W2783646838C195766429 @default.
- W2783646838 hasConceptScore W2783646838C22019652 @default.
- W2783646838 hasConceptScore W2783646838C22354355 @default.
- W2783646838 hasConceptScore W2783646838C2776401178 @default.
- W2783646838 hasConceptScore W2783646838C2776959682 @default.
- W2783646838 hasConceptScore W2783646838C33923547 @default.
- W2783646838 hasConceptScore W2783646838C41008148 @default.
- W2783646838 hasConceptScore W2783646838C41895202 @default.
- W2783646838 hasConceptScore W2783646838C49937458 @default.
- W2783646838 hasConceptScore W2783646838C50644808 @default.
- W2783646838 hasConceptScore W2783646838C58973888 @default.
- W2783646838 hasConceptScore W2783646838C78519656 @default.
- W2783646838 hasLocation W27836468381 @default.
- W2783646838 hasOpenAccess W2783646838 @default.
- W2783646838 hasPrimaryLocation W27836468381 @default.
- W2783646838 hasRelatedWork W173413571 @default.
- W2783646838 hasRelatedWork W2097340466 @default.
- W2783646838 hasRelatedWork W2139902660 @default.
- W2783646838 hasRelatedWork W2567299040 @default.
- W2783646838 hasRelatedWork W2587314205 @default.
- W2783646838 hasRelatedWork W2747800859 @default.
- W2783646838 hasRelatedWork W2810438149 @default.
- W2783646838 hasRelatedWork W2811507669 @default.
- W2783646838 hasRelatedWork W2967913444 @default.
- W2783646838 hasRelatedWork W2970043232 @default.
- W2783646838 hasRelatedWork W2996505659 @default.
- W2783646838 hasRelatedWork W3004513838 @default.
- W2783646838 hasRelatedWork W3008277272 @default.