Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783649419> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2783649419 abstract "Many of recent advanced measurement techniques acquire highly complex information through elaborate measurement processes, and estimate the measurement objects from their corresponding patterns reflected in the outcome of these processes. The introduction of advanced statistical and machine learning methods to measurement techniques is now inevitable to solve these complicated inverse problems. However, the state of the art remains the straightforward application of problem settings and their solutions studied in statistics and machine learning which assume a steady population distribution providing the objective data, whereas every measurement is performed under a distinct distribution of disturbances and noises. As claimed and demonstrated in this paper, this fact largely degrades the accuracy and robustness of the measurements. To effectively overcome this issue, we present a framework of robust and accurate machine learning against deviations of population distributions between calibration data for the training and a new single observation in the measurement. This is achieved by properly reflecting generic measurement processes to their estimations. The significant advantages of the presented framework are demonstrated through a real-world application to olfactory sensing." @default.
- W2783649419 created "2018-01-26" @default.
- W2783649419 creator A5046307000 @default.
- W2783649419 creator A5047241375 @default.
- W2783649419 creator A5076542981 @default.
- W2783649419 date "2017-10-01" @default.
- W2783649419 modified "2023-09-25" @default.
- W2783649419 title "Machine Learning Independent of Population Distributions for Measurement" @default.
- W2783649419 cites W1625941627 @default.
- W2783649419 cites W1971845710 @default.
- W2783649419 cites W1984201284 @default.
- W2783649419 cites W2006463578 @default.
- W2783649419 cites W2034368206 @default.
- W2783649419 cites W2059285679 @default.
- W2783649419 cites W2110357888 @default.
- W2783649419 cites W2117431169 @default.
- W2783649419 cites W2144020560 @default.
- W2783649419 cites W2165698076 @default.
- W2783649419 cites W2324460825 @default.
- W2783649419 cites W2395128905 @default.
- W2783649419 doi "https://doi.org/10.1109/dsaa.2017.28" @default.
- W2783649419 hasPublicationYear "2017" @default.
- W2783649419 type Work @default.
- W2783649419 sameAs 2783649419 @default.
- W2783649419 citedByCount "1" @default.
- W2783649419 countsByYear W27836494192021 @default.
- W2783649419 crossrefType "proceedings-article" @default.
- W2783649419 hasAuthorship W2783649419A5046307000 @default.
- W2783649419 hasAuthorship W2783649419A5047241375 @default.
- W2783649419 hasAuthorship W2783649419A5076542981 @default.
- W2783649419 hasConcept C104317684 @default.
- W2783649419 hasConcept C105795698 @default.
- W2783649419 hasConcept C119857082 @default.
- W2783649419 hasConcept C121332964 @default.
- W2783649419 hasConcept C1276947 @default.
- W2783649419 hasConcept C137209882 @default.
- W2783649419 hasConcept C144024400 @default.
- W2783649419 hasConcept C149923435 @default.
- W2783649419 hasConcept C154945302 @default.
- W2783649419 hasConcept C165838908 @default.
- W2783649419 hasConcept C185592680 @default.
- W2783649419 hasConcept C19619285 @default.
- W2783649419 hasConcept C2908647359 @default.
- W2783649419 hasConcept C33923547 @default.
- W2783649419 hasConcept C37649242 @default.
- W2783649419 hasConcept C41008148 @default.
- W2783649419 hasConcept C55493867 @default.
- W2783649419 hasConcept C63479239 @default.
- W2783649419 hasConceptScore W2783649419C104317684 @default.
- W2783649419 hasConceptScore W2783649419C105795698 @default.
- W2783649419 hasConceptScore W2783649419C119857082 @default.
- W2783649419 hasConceptScore W2783649419C121332964 @default.
- W2783649419 hasConceptScore W2783649419C1276947 @default.
- W2783649419 hasConceptScore W2783649419C137209882 @default.
- W2783649419 hasConceptScore W2783649419C144024400 @default.
- W2783649419 hasConceptScore W2783649419C149923435 @default.
- W2783649419 hasConceptScore W2783649419C154945302 @default.
- W2783649419 hasConceptScore W2783649419C165838908 @default.
- W2783649419 hasConceptScore W2783649419C185592680 @default.
- W2783649419 hasConceptScore W2783649419C19619285 @default.
- W2783649419 hasConceptScore W2783649419C2908647359 @default.
- W2783649419 hasConceptScore W2783649419C33923547 @default.
- W2783649419 hasConceptScore W2783649419C37649242 @default.
- W2783649419 hasConceptScore W2783649419C41008148 @default.
- W2783649419 hasConceptScore W2783649419C55493867 @default.
- W2783649419 hasConceptScore W2783649419C63479239 @default.
- W2783649419 hasLocation W27836494191 @default.
- W2783649419 hasOpenAccess W2783649419 @default.
- W2783649419 hasPrimaryLocation W27836494191 @default.
- W2783649419 hasRelatedWork W1530398302 @default.
- W2783649419 hasRelatedWork W180013203 @default.
- W2783649419 hasRelatedWork W2085156766 @default.
- W2783649419 hasRelatedWork W2109581903 @default.
- W2783649419 hasRelatedWork W2245090237 @default.
- W2783649419 hasRelatedWork W2472378253 @default.
- W2783649419 hasRelatedWork W2725983097 @default.
- W2783649419 hasRelatedWork W2890972698 @default.
- W2783649419 hasRelatedWork W2953931336 @default.
- W2783649419 hasRelatedWork W3007206192 @default.
- W2783649419 hasRelatedWork W3041466434 @default.
- W2783649419 hasRelatedWork W3093989596 @default.
- W2783649419 hasRelatedWork W3142446268 @default.
- W2783649419 hasRelatedWork W3185859287 @default.
- W2783649419 hasRelatedWork W3191662906 @default.
- W2783649419 hasRelatedWork W3205127501 @default.
- W2783649419 hasRelatedWork W3208808915 @default.
- W2783649419 hasRelatedWork W332317411 @default.
- W2783649419 hasRelatedWork W567097290 @default.
- W2783649419 hasRelatedWork W9303199 @default.
- W2783649419 isParatext "false" @default.
- W2783649419 isRetracted "false" @default.
- W2783649419 magId "2783649419" @default.
- W2783649419 workType "article" @default.