Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783704527> ?p ?o ?g. }
- W2783704527 endingPage "4996" @default.
- W2783704527 startingPage "4983" @default.
- W2783704527 abstract "Variational Bayesian (VB) learning has been successfully applied to instantaneous blind source separation. However, the traditional VB learning is restricted to the separation of independent source signals. Moreover, it has the difficulty to recover source signals with a sizable number of samples because of its rapidly increasing computational requirement. To overcome such shortcomings, frame-based VB (FVB) learning is proposed to address both independent and dependent source separation with a large number of samples in this paper. Specifically, a Gaussian process (GP) is employed to model independent or dependent source signals. To our knowledge, GP has been only used to model each of independent source signals. For dependent source signals, this paper proposes a novel modeling process: initial source signals are zigzag concatenated into a long serial and GP is then used to model it. In order to obtain a reliable covariance function for GP, first, we apply singular value decomposition to give initial estimated source signals and then we select an appropriate covariance function with which GP can perfectly fit them. In order to alleviate the computational burden of VB learning, we split observed signals into frames, and then model and infer source signals for each frame. Compared with the state-of-the-art algorithms, the experimental results show that the FVB learning has potential to provide improvement in separation performance not only for independent source signals but also for dependent ones, especially for long data records." @default.
- W2783704527 created "2018-01-26" @default.
- W2783704527 creator A5013635684 @default.
- W2783704527 creator A5064684366 @default.
- W2783704527 creator A5081318069 @default.
- W2783704527 date "2018-10-01" @default.
- W2783704527 modified "2023-09-28" @default.
- W2783704527 title "Frame-Based Variational Bayesian Learning for Independent or Dependent Source Separation" @default.
- W2783704527 cites W1595159159 @default.
- W2783704527 cites W1893333638 @default.
- W2783704527 cites W1986810676 @default.
- W2783704527 cites W1990239957 @default.
- W2783704527 cites W2015583498 @default.
- W2783704527 cites W2026366399 @default.
- W2783704527 cites W2031125960 @default.
- W2783704527 cites W2047737415 @default.
- W2783704527 cites W2059980448 @default.
- W2783704527 cites W2061844155 @default.
- W2783704527 cites W2072427944 @default.
- W2783704527 cites W2075910314 @default.
- W2783704527 cites W2080987602 @default.
- W2783704527 cites W2084004807 @default.
- W2783704527 cites W2091777133 @default.
- W2783704527 cites W2092289457 @default.
- W2783704527 cites W2112220340 @default.
- W2783704527 cites W2113907273 @default.
- W2783704527 cites W2114460789 @default.
- W2783704527 cites W2114461480 @default.
- W2783704527 cites W2118225305 @default.
- W2783704527 cites W2124696819 @default.
- W2783704527 cites W2131067207 @default.
- W2783704527 cites W2141188596 @default.
- W2783704527 cites W2142638745 @default.
- W2783704527 cites W2149273154 @default.
- W2783704527 cites W2163202748 @default.
- W2783704527 cites W4232944527 @default.
- W2783704527 cites W4300989551 @default.
- W2783704527 doi "https://doi.org/10.1109/tnnls.2017.2785278" @default.
- W2783704527 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29994753" @default.
- W2783704527 hasPublicationYear "2018" @default.
- W2783704527 type Work @default.
- W2783704527 sameAs 2783704527 @default.
- W2783704527 citedByCount "9" @default.
- W2783704527 countsByYear W27837045272018 @default.
- W2783704527 countsByYear W27837045272019 @default.
- W2783704527 countsByYear W27837045272020 @default.
- W2783704527 countsByYear W27837045272021 @default.
- W2783704527 countsByYear W27837045272022 @default.
- W2783704527 crossrefType "journal-article" @default.
- W2783704527 hasAuthorship W2783704527A5013635684 @default.
- W2783704527 hasAuthorship W2783704527A5064684366 @default.
- W2783704527 hasAuthorship W2783704527A5081318069 @default.
- W2783704527 hasConcept C105795698 @default.
- W2783704527 hasConcept C107673813 @default.
- W2783704527 hasConcept C11413529 @default.
- W2783704527 hasConcept C119857082 @default.
- W2783704527 hasConcept C120317606 @default.
- W2783704527 hasConcept C121332964 @default.
- W2783704527 hasConcept C126042441 @default.
- W2783704527 hasConcept C127162648 @default.
- W2783704527 hasConcept C137250428 @default.
- W2783704527 hasConcept C14036430 @default.
- W2783704527 hasConcept C153180895 @default.
- W2783704527 hasConcept C154945302 @default.
- W2783704527 hasConcept C163716315 @default.
- W2783704527 hasConcept C178650346 @default.
- W2783704527 hasConcept C185142706 @default.
- W2783704527 hasConcept C2776864781 @default.
- W2783704527 hasConcept C31258907 @default.
- W2783704527 hasConcept C33923547 @default.
- W2783704527 hasConcept C41008148 @default.
- W2783704527 hasConcept C61326573 @default.
- W2783704527 hasConcept C62520636 @default.
- W2783704527 hasConcept C76155785 @default.
- W2783704527 hasConcept C78458016 @default.
- W2783704527 hasConcept C86803240 @default.
- W2783704527 hasConceptScore W2783704527C105795698 @default.
- W2783704527 hasConceptScore W2783704527C107673813 @default.
- W2783704527 hasConceptScore W2783704527C11413529 @default.
- W2783704527 hasConceptScore W2783704527C119857082 @default.
- W2783704527 hasConceptScore W2783704527C120317606 @default.
- W2783704527 hasConceptScore W2783704527C121332964 @default.
- W2783704527 hasConceptScore W2783704527C126042441 @default.
- W2783704527 hasConceptScore W2783704527C127162648 @default.
- W2783704527 hasConceptScore W2783704527C137250428 @default.
- W2783704527 hasConceptScore W2783704527C14036430 @default.
- W2783704527 hasConceptScore W2783704527C153180895 @default.
- W2783704527 hasConceptScore W2783704527C154945302 @default.
- W2783704527 hasConceptScore W2783704527C163716315 @default.
- W2783704527 hasConceptScore W2783704527C178650346 @default.
- W2783704527 hasConceptScore W2783704527C185142706 @default.
- W2783704527 hasConceptScore W2783704527C2776864781 @default.
- W2783704527 hasConceptScore W2783704527C31258907 @default.
- W2783704527 hasConceptScore W2783704527C33923547 @default.
- W2783704527 hasConceptScore W2783704527C41008148 @default.
- W2783704527 hasConceptScore W2783704527C61326573 @default.
- W2783704527 hasConceptScore W2783704527C62520636 @default.
- W2783704527 hasConceptScore W2783704527C76155785 @default.