Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783704696> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2783704696 abstract "Predicting failure in Hard Disk Drives (HDD) is of fundamental importance for data loss avoidance as well as to lower the downtime costs of a system. As a consequence, an increasing effort may be observed from both universities and industry to find suitable failure prediction methods. Despite the encouraging performances achieved by various methods one important aspect that shall be noticed is the lack of data available to build reliable models. Considering the HDD failure prediction task, this problem arises with the numerous HDD models. To overcome such problem, transfer learning strategies offer a valid alternative since it can be used to transfer learning from HDD model with enough data to build failure prediction methods for HDD models with lack of data. In this work we evaluate several transfer learning strategies in the task of HDD failure prediction. Additionally we propose a new strategy to build information sources based on the clustering of similar HDD models. This approach may be a valid alternative when no HDD model has enough data to generate a reliable model. Results showed that all transfer learning scenarios can improve the performance of HDDs failure prediction methods, mainly for HDDs with very limited data. Moreover, the clustering-based information source also results in performance gains in all transfer methods and HDD models tested." @default.
- W2783704696 created "2018-01-26" @default.
- W2783704696 creator A5003557913 @default.
- W2783704696 creator A5060534675 @default.
- W2783704696 creator A5062433943 @default.
- W2783704696 creator A5064422885 @default.
- W2783704696 creator A5074294631 @default.
- W2783704696 date "2017-10-01" @default.
- W2783704696 modified "2023-09-25" @default.
- W2783704696 title "Transfer Learning for Bayesian Networks with Application on Hard Disk Drives Failure Prediction" @default.
- W2783704696 cites W1965870966 @default.
- W2783704696 cites W1988814833 @default.
- W2783704696 cites W2002772577 @default.
- W2783704696 cites W2051361808 @default.
- W2783704696 cites W2052643920 @default.
- W2783704696 cites W2114739461 @default.
- W2783704696 cites W2143426320 @default.
- W2783704696 cites W2165698076 @default.
- W2783704696 cites W2191264216 @default.
- W2783704696 cites W2275580678 @default.
- W2783704696 cites W2319441181 @default.
- W2783704696 cites W2503787270 @default.
- W2783704696 cites W2584778735 @default.
- W2783704696 cites W2584928005 @default.
- W2783704696 cites W2588000623 @default.
- W2783704696 cites W3104727908 @default.
- W2783704696 cites W591732527 @default.
- W2783704696 doi "https://doi.org/10.1109/bracis.2017.64" @default.
- W2783704696 hasPublicationYear "2017" @default.
- W2783704696 type Work @default.
- W2783704696 sameAs 2783704696 @default.
- W2783704696 citedByCount "9" @default.
- W2783704696 countsByYear W27837046962020 @default.
- W2783704696 countsByYear W27837046962021 @default.
- W2783704696 countsByYear W27837046962022 @default.
- W2783704696 countsByYear W27837046962023 @default.
- W2783704696 crossrefType "proceedings-article" @default.
- W2783704696 hasAuthorship W2783704696A5003557913 @default.
- W2783704696 hasAuthorship W2783704696A5060534675 @default.
- W2783704696 hasAuthorship W2783704696A5062433943 @default.
- W2783704696 hasAuthorship W2783704696A5064422885 @default.
- W2783704696 hasAuthorship W2783704696A5074294631 @default.
- W2783704696 hasConcept C111919701 @default.
- W2783704696 hasConcept C119857082 @default.
- W2783704696 hasConcept C124101348 @default.
- W2783704696 hasConcept C127413603 @default.
- W2783704696 hasConcept C150899416 @default.
- W2783704696 hasConcept C154945302 @default.
- W2783704696 hasConcept C180591934 @default.
- W2783704696 hasConcept C201995342 @default.
- W2783704696 hasConcept C2780451532 @default.
- W2783704696 hasConcept C41008148 @default.
- W2783704696 hasConcept C73555534 @default.
- W2783704696 hasConceptScore W2783704696C111919701 @default.
- W2783704696 hasConceptScore W2783704696C119857082 @default.
- W2783704696 hasConceptScore W2783704696C124101348 @default.
- W2783704696 hasConceptScore W2783704696C127413603 @default.
- W2783704696 hasConceptScore W2783704696C150899416 @default.
- W2783704696 hasConceptScore W2783704696C154945302 @default.
- W2783704696 hasConceptScore W2783704696C180591934 @default.
- W2783704696 hasConceptScore W2783704696C201995342 @default.
- W2783704696 hasConceptScore W2783704696C2780451532 @default.
- W2783704696 hasConceptScore W2783704696C41008148 @default.
- W2783704696 hasConceptScore W2783704696C73555534 @default.
- W2783704696 hasLocation W27837046961 @default.
- W2783704696 hasOpenAccess W2783704696 @default.
- W2783704696 hasPrimaryLocation W27837046961 @default.
- W2783704696 hasRelatedWork W2946016983 @default.
- W2783704696 hasRelatedWork W2960456850 @default.
- W2783704696 hasRelatedWork W3015887428 @default.
- W2783704696 hasRelatedWork W3021430260 @default.
- W2783704696 hasRelatedWork W4281645081 @default.
- W2783704696 hasRelatedWork W4308262314 @default.
- W2783704696 hasRelatedWork W4312200629 @default.
- W2783704696 hasRelatedWork W4317565044 @default.
- W2783704696 hasRelatedWork W4382286161 @default.
- W2783704696 hasRelatedWork W4386213806 @default.
- W2783704696 isParatext "false" @default.
- W2783704696 isRetracted "false" @default.
- W2783704696 magId "2783704696" @default.
- W2783704696 workType "article" @default.