Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783705773> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2783705773 endingPage "40" @default.
- W2783705773 startingPage "21" @default.
- W2783705773 abstract "Recently, several studies have reported that the computer programs are called the game agent exceed to the ability of experts in some board games, e.g., Deep Blue, AKARA, AlphaGO, etc. Meanwhile, human beings have no advantages in terms of numerical ability compared with computers; however, experts often defeat those programs. For this, the aim of many researches for developing agents of board games is to defeat experts in all kinds of computational ways; hence, those depend on the computational capability because those apply deep look ahead search to determination of moves. By contrast to those researches, our final aims are the development of a board game agent does not require the high computational capability and of an “Enjoyable” game agent is tailored skills for a player based on “Simple structure and Algorithms.” To realize our aims, we propose to combine SelfOrganizing Maps(SOM) with Reinforcement Learning. For more effective learning of the optimal moves of a board game, our proposal modifies the formula of SOM and introduces the tree search with less calculation load to determine moves in the closing stage. We conduct the two experiments; firstly, we examine the availability of our proposals. Secondly, we aim for improving the winning rate. From the results, the game agent that is developed on the basis of our proposal achieved a 60% winning rate against the opponent program by using the general personal computer. Moreover, those suggest the potential of becoming an “Enjoyable” game agent for every player with diverse skills." @default.
- W2783705773 created "2018-01-26" @default.
- W2783705773 creator A5033652060 @default.
- W2783705773 creator A5061259926 @default.
- W2783705773 date "2017-01-01" @default.
- W2783705773 modified "2023-10-18" @default.
- W2783705773 title "An Approach to the Development of a Game Agent based on SOM and Reinforcement Learning" @default.
- W2783705773 doi "https://doi.org/10.52731/ijscai.v1.i2.92" @default.
- W2783705773 hasPublicationYear "2017" @default.
- W2783705773 type Work @default.
- W2783705773 sameAs 2783705773 @default.
- W2783705773 citedByCount "0" @default.
- W2783705773 crossrefType "journal-article" @default.
- W2783705773 hasAuthorship W2783705773A5033652060 @default.
- W2783705773 hasAuthorship W2783705773A5061259926 @default.
- W2783705773 hasBestOaLocation W27837057731 @default.
- W2783705773 hasConcept C102234262 @default.
- W2783705773 hasConcept C107457646 @default.
- W2783705773 hasConcept C111472728 @default.
- W2783705773 hasConcept C138885662 @default.
- W2783705773 hasConcept C154945302 @default.
- W2783705773 hasConcept C162324750 @default.
- W2783705773 hasConcept C175444787 @default.
- W2783705773 hasConcept C177142836 @default.
- W2783705773 hasConcept C2780586882 @default.
- W2783705773 hasConcept C38652104 @default.
- W2783705773 hasConcept C41008148 @default.
- W2783705773 hasConcept C41065033 @default.
- W2783705773 hasConcept C73795354 @default.
- W2783705773 hasConcept C97541855 @default.
- W2783705773 hasConceptScore W2783705773C102234262 @default.
- W2783705773 hasConceptScore W2783705773C107457646 @default.
- W2783705773 hasConceptScore W2783705773C111472728 @default.
- W2783705773 hasConceptScore W2783705773C138885662 @default.
- W2783705773 hasConceptScore W2783705773C154945302 @default.
- W2783705773 hasConceptScore W2783705773C162324750 @default.
- W2783705773 hasConceptScore W2783705773C175444787 @default.
- W2783705773 hasConceptScore W2783705773C177142836 @default.
- W2783705773 hasConceptScore W2783705773C2780586882 @default.
- W2783705773 hasConceptScore W2783705773C38652104 @default.
- W2783705773 hasConceptScore W2783705773C41008148 @default.
- W2783705773 hasConceptScore W2783705773C41065033 @default.
- W2783705773 hasConceptScore W2783705773C73795354 @default.
- W2783705773 hasConceptScore W2783705773C97541855 @default.
- W2783705773 hasIssue "2" @default.
- W2783705773 hasLocation W27837057731 @default.
- W2783705773 hasOpenAccess W2783705773 @default.
- W2783705773 hasPrimaryLocation W27837057731 @default.
- W2783705773 hasRelatedWork W103750121 @default.
- W2783705773 hasRelatedWork W194461482 @default.
- W2783705773 hasRelatedWork W2042934704 @default.
- W2783705773 hasRelatedWork W2098501469 @default.
- W2783705773 hasRelatedWork W2157682485 @default.
- W2783705773 hasRelatedWork W2591434034 @default.
- W2783705773 hasRelatedWork W2783705773 @default.
- W2783705773 hasRelatedWork W3016182934 @default.
- W2783705773 hasRelatedWork W3094607870 @default.
- W2783705773 hasRelatedWork W3131253889 @default.
- W2783705773 hasVolume "1" @default.
- W2783705773 isParatext "false" @default.
- W2783705773 isRetracted "false" @default.
- W2783705773 magId "2783705773" @default.
- W2783705773 workType "article" @default.