Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783706551> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2783706551 abstract "Estimating the remaining useful life (RUL) of systems and/or equpipments has been an important goal for reliable, safe, and profitable operation of industrial plants. However, traditional mathematical and statistical modeling based approaches are difficult to design and they adapt poorly to the ever changing operating and environmental conditions in real-world industries. With recent developments in computational technologies, data storage, and industrial automation recording and storage of large amounts of historical plant data from embedded sensors and maintenance records have become easy. Availability of large data sets together with advancements in data driven machine learning algorithms has been the key driver for prognostic and diagnostic research in the industry as well as by academia. Nevertheless, developing generalized machine learning algorithms for the prognostic domain has been challenging due to the very nature of the problem. This paper describes some of these challenges and proposes a modified regression kernel that can be used by support vector regression (SVR) for prognostic problems. The method is tested on a simplified simulated time-series data set that is modeled to represent the challenges presented." @default.
- W2783706551 created "2018-01-26" @default.
- W2783706551 creator A5006372024 @default.
- W2783706551 creator A5011279717 @default.
- W2783706551 creator A5027926451 @default.
- W2783706551 date "2017-09-01" @default.
- W2783706551 modified "2023-10-17" @default.
- W2783706551 title "Regression kernel for prognostics with support vector machines" @default.
- W2783706551 cites W1521943487 @default.
- W2783706551 cites W1964357740 @default.
- W2783706551 cites W1982275278 @default.
- W2783706551 cites W2001129496 @default.
- W2783706551 cites W2016864600 @default.
- W2783706551 cites W2033486907 @default.
- W2783706551 cites W2045186954 @default.
- W2783706551 cites W2055873761 @default.
- W2783706551 cites W2066995518 @default.
- W2783706551 cites W2088682215 @default.
- W2783706551 cites W2113862810 @default.
- W2783706551 cites W2120841219 @default.
- W2783706551 cites W2124958607 @default.
- W2783706551 cites W2169851606 @default.
- W2783706551 cites W2172064003 @default.
- W2783706551 cites W2341973567 @default.
- W2783706551 cites W2342958238 @default.
- W2783706551 doi "https://doi.org/10.1109/etfa.2017.8247740" @default.
- W2783706551 hasPublicationYear "2017" @default.
- W2783706551 type Work @default.
- W2783706551 sameAs 2783706551 @default.
- W2783706551 citedByCount "13" @default.
- W2783706551 countsByYear W27837065512019 @default.
- W2783706551 countsByYear W27837065512020 @default.
- W2783706551 countsByYear W27837065512021 @default.
- W2783706551 countsByYear W27837065512022 @default.
- W2783706551 countsByYear W27837065512023 @default.
- W2783706551 crossrefType "proceedings-article" @default.
- W2783706551 hasAuthorship W2783706551A5006372024 @default.
- W2783706551 hasAuthorship W2783706551A5011279717 @default.
- W2783706551 hasAuthorship W2783706551A5027926451 @default.
- W2783706551 hasConcept C105795698 @default.
- W2783706551 hasConcept C114614502 @default.
- W2783706551 hasConcept C119857082 @default.
- W2783706551 hasConcept C122280245 @default.
- W2783706551 hasConcept C12267149 @default.
- W2783706551 hasConcept C124101348 @default.
- W2783706551 hasConcept C129364497 @default.
- W2783706551 hasConcept C145828037 @default.
- W2783706551 hasConcept C14948415 @default.
- W2783706551 hasConcept C153180895 @default.
- W2783706551 hasConcept C154945302 @default.
- W2783706551 hasConcept C160446489 @default.
- W2783706551 hasConcept C33923547 @default.
- W2783706551 hasConcept C41008148 @default.
- W2783706551 hasConcept C74193536 @default.
- W2783706551 hasConcept C83546350 @default.
- W2783706551 hasConceptScore W2783706551C105795698 @default.
- W2783706551 hasConceptScore W2783706551C114614502 @default.
- W2783706551 hasConceptScore W2783706551C119857082 @default.
- W2783706551 hasConceptScore W2783706551C122280245 @default.
- W2783706551 hasConceptScore W2783706551C12267149 @default.
- W2783706551 hasConceptScore W2783706551C124101348 @default.
- W2783706551 hasConceptScore W2783706551C129364497 @default.
- W2783706551 hasConceptScore W2783706551C145828037 @default.
- W2783706551 hasConceptScore W2783706551C14948415 @default.
- W2783706551 hasConceptScore W2783706551C153180895 @default.
- W2783706551 hasConceptScore W2783706551C154945302 @default.
- W2783706551 hasConceptScore W2783706551C160446489 @default.
- W2783706551 hasConceptScore W2783706551C33923547 @default.
- W2783706551 hasConceptScore W2783706551C41008148 @default.
- W2783706551 hasConceptScore W2783706551C74193536 @default.
- W2783706551 hasConceptScore W2783706551C83546350 @default.
- W2783706551 hasLocation W27837065511 @default.
- W2783706551 hasOpenAccess W2783706551 @default.
- W2783706551 hasPrimaryLocation W27837065511 @default.
- W2783706551 hasRelatedWork W1924599836 @default.
- W2783706551 hasRelatedWork W1927531272 @default.
- W2783706551 hasRelatedWork W2348982811 @default.
- W2783706551 hasRelatedWork W2356484901 @default.
- W2783706551 hasRelatedWork W2361876834 @default.
- W2783706551 hasRelatedWork W2373430648 @default.
- W2783706551 hasRelatedWork W2392890851 @default.
- W2783706551 hasRelatedWork W2735664752 @default.
- W2783706551 hasRelatedWork W2795609385 @default.
- W2783706551 hasRelatedWork W74282844 @default.
- W2783706551 isParatext "false" @default.
- W2783706551 isRetracted "false" @default.
- W2783706551 magId "2783706551" @default.
- W2783706551 workType "article" @default.