Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783802546> ?p ?o ?g. }
- W2783802546 endingPage "83" @default.
- W2783802546 startingPage "72" @default.
- W2783802546 abstract "Climate-related extended outbreaks and range shifts of destructive bark beetle species pose a serious threat to urban boreal forests in North America and Fennoscandia. Recent developments in low-cost remote sensing technologies offer an attractive means for early detection and management of environmental change. They are of great interest to the actors responsible for monitoring and managing forest health. The objective of this investigation was to develop, assess, and compare automated remote sensing procedures based on novel, low-cost hyperspectral imaging technology for the identification of bark beetle infestations at the individual tree level in urban forests. A hyperspectral camera based on a tunable Fabry-Pérot interferometer was operated from a small, unmanned airborne vehicle (UAV) platform and a small Cessna-type aircraft platform. This study compared aspects of using UAV datasets with a spatial extent of a few hectares (ha) and a ground sample distance (GSD) of 10–12 cm to the aircraft data covering areas of several km2 and having a GSD of 50 cm. An empirical assessment of the automated identification of mature Norway spruce (Picea abies L. Karst.) trees suffering from infestation (representing different colonization phases) by the European spruce bark beetle (Ips typographus L.) was carried out in the urban forests of Lahti, a city in southern Finland. Individual spruces were classified as healthy, infested, or dead. For the entire test area, the best aircraft data results for overall accuracy were 79% (Cohen’s kappa: 0.54) when using three crown color classes (green as healthy, yellow as infested, and gray as dead). For two color classes (healthy, dead) in the same area, the best overall accuracy was 93% (kappa: 0.77). The finer resolution UAV dataset provided better results, with an overall accuracy of 81% (kappa: 0.70), compared to the aircraft results of 73% (kappa: 0.56) in a smaller sub-area. The results showed that novel, low-cost remote sensing technologies based on individual tree analysis and calibrated remote sensing imagery offer great potential for affordable and timely assessments of the health condition of vulnerable urban forests." @default.
- W2783802546 created "2018-01-26" @default.
- W2783802546 creator A5005310340 @default.
- W2783802546 creator A5010833142 @default.
- W2783802546 creator A5011450440 @default.
- W2783802546 creator A5018473742 @default.
- W2783802546 creator A5031080228 @default.
- W2783802546 creator A5037907825 @default.
- W2783802546 creator A5060470478 @default.
- W2783802546 creator A5061837252 @default.
- W2783802546 date "2018-03-01" @default.
- W2783802546 modified "2023-10-14" @default.
- W2783802546 title "Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft" @default.
- W2783802546 cites W1442930683 @default.
- W2783802546 cites W1543507298 @default.
- W2783802546 cites W1973976434 @default.
- W2783802546 cites W2006588449 @default.
- W2783802546 cites W2006593619 @default.
- W2783802546 cites W2015452969 @default.
- W2783802546 cites W2017859040 @default.
- W2783802546 cites W2021729752 @default.
- W2783802546 cites W2027442956 @default.
- W2783802546 cites W2031850322 @default.
- W2783802546 cites W2043516695 @default.
- W2783802546 cites W2070858879 @default.
- W2783802546 cites W2081895269 @default.
- W2783802546 cites W2084988036 @default.
- W2783802546 cites W2091874171 @default.
- W2783802546 cites W2102321521 @default.
- W2783802546 cites W2109527455 @default.
- W2783802546 cites W2144313462 @default.
- W2783802546 cites W2166425941 @default.
- W2783802546 cites W2175962182 @default.
- W2783802546 cites W2178471458 @default.
- W2783802546 cites W2306878811 @default.
- W2783802546 cites W2482464033 @default.
- W2783802546 cites W2507716131 @default.
- W2783802546 cites W2521062444 @default.
- W2783802546 cites W2553436450 @default.
- W2783802546 cites W2556502614 @default.
- W2783802546 cites W2560901046 @default.
- W2783802546 cites W2563201381 @default.
- W2783802546 cites W2587019393 @default.
- W2783802546 cites W2591466624 @default.
- W2783802546 cites W2606093983 @default.
- W2783802546 cites W2736508163 @default.
- W2783802546 cites W2760577391 @default.
- W2783802546 cites W656678068 @default.
- W2783802546 doi "https://doi.org/10.1016/j.ufug.2018.01.010" @default.
- W2783802546 hasPublicationYear "2018" @default.
- W2783802546 type Work @default.
- W2783802546 sameAs 2783802546 @default.
- W2783802546 citedByCount "134" @default.
- W2783802546 countsByYear W27838025462018 @default.
- W2783802546 countsByYear W27838025462019 @default.
- W2783802546 countsByYear W27838025462020 @default.
- W2783802546 countsByYear W27838025462021 @default.
- W2783802546 countsByYear W27838025462022 @default.
- W2783802546 countsByYear W27838025462023 @default.
- W2783802546 crossrefType "journal-article" @default.
- W2783802546 hasAuthorship W2783802546A5005310340 @default.
- W2783802546 hasAuthorship W2783802546A5010833142 @default.
- W2783802546 hasAuthorship W2783802546A5011450440 @default.
- W2783802546 hasAuthorship W2783802546A5018473742 @default.
- W2783802546 hasAuthorship W2783802546A5031080228 @default.
- W2783802546 hasAuthorship W2783802546A5037907825 @default.
- W2783802546 hasAuthorship W2783802546A5060470478 @default.
- W2783802546 hasAuthorship W2783802546A5061837252 @default.
- W2783802546 hasBestOaLocation W27838025461 @default.
- W2783802546 hasConcept C133446333 @default.
- W2783802546 hasConcept C142724271 @default.
- W2783802546 hasConcept C159078339 @default.
- W2783802546 hasConcept C160633673 @default.
- W2783802546 hasConcept C18903297 @default.
- W2783802546 hasConcept C197513456 @default.
- W2783802546 hasConcept C205649164 @default.
- W2783802546 hasConcept C2776133958 @default.
- W2783802546 hasConcept C2777427081 @default.
- W2783802546 hasConcept C2779751432 @default.
- W2783802546 hasConcept C2780977904 @default.
- W2783802546 hasConcept C2991880734 @default.
- W2783802546 hasConcept C31972630 @default.
- W2783802546 hasConcept C39432304 @default.
- W2783802546 hasConcept C41008148 @default.
- W2783802546 hasConcept C62649853 @default.
- W2783802546 hasConcept C71924100 @default.
- W2783802546 hasConcept C86803240 @default.
- W2783802546 hasConcept C97137747 @default.
- W2783802546 hasConceptScore W2783802546C133446333 @default.
- W2783802546 hasConceptScore W2783802546C142724271 @default.
- W2783802546 hasConceptScore W2783802546C159078339 @default.
- W2783802546 hasConceptScore W2783802546C160633673 @default.
- W2783802546 hasConceptScore W2783802546C18903297 @default.
- W2783802546 hasConceptScore W2783802546C197513456 @default.
- W2783802546 hasConceptScore W2783802546C205649164 @default.
- W2783802546 hasConceptScore W2783802546C2776133958 @default.
- W2783802546 hasConceptScore W2783802546C2777427081 @default.
- W2783802546 hasConceptScore W2783802546C2779751432 @default.