Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783805672> ?p ?o ?g. }
- W2783805672 endingPage "145" @default.
- W2783805672 startingPage "131" @default.
- W2783805672 abstract "Current therapeutic strategies to reduce scarring in full thickness skin defect offer limited success due to poor understanding of scar tissue formation and the underlying signaling pathways. There is an urgent need to develop human cell based in vitro scar tissue models as animal testing is associated with ethical and logistic complications and inter-species variations. Pro-inflammatory cytokines play critical role in regulating scar development through complex interplay and interaction with the ECM and corresponding signaling pathways. In this context, we assessed the responses of cultured fibroblasts with respect to their differentiation into myofibroblasts using optimised cytokines (TGF-β1, IL-6 and IL-8) for scar formation in 2D (tissue culture plate, collagen type I coated plate) vs 3D collagen type I gel based constructs. We attempted to deduce the role of dimensionality of cell culture matrix in modulating differentiation, function and phenotype of cultured fibroblasts. Validation of the developed model showed similarity to etiology and pathophysiology of in vivo hypertrophic scar with respect to several features: 1) transition of fibroblasts to myofibroblasts with convincing expression of α-SMA stress fibers; 2) contraction; 3) excessive collagen and fibronectin secretion; 4) expression of fibrotic ECM proteins (SPARC and Tenascin); 5) low MMP secretion. Most importantly, we elucidated the involvement of TGF-β/SMAD and Wnt/β-catenin pathways in developing in vitro dermal scar. Hence, this relatively simple in vitro human scar tissue equivalent may serve as an alternative for testing and designing of novel therapeutics and help in extending our understanding of the complex interplay of cytokines and related dermal scar specific signaling. Scarring of the skin affects almost millions of people per year in the developed world alone, nevertheless the complex pathophysiology and the precise signaling mechanisms responsible for this phenomenon of skin scarring are still unknown. A number of anti-scar drugs are being developed and being tested on animals and monolayer models. However, testing the efficacy of these drugs on lab based 3D in vitro models may prove extremely useful in recapitulating the 3D microenvironment of the native scar tissue. In that context in this study we have demonstrated the development of 3D in vitro dermal scar model, by optimizing a constellation of factors, such as combination of cytokines (TGF-β1,IL-6,IL-8) and cellular dimensionality in inducing the differentiation of dermal fibroblasts to myofibroblasts. This in vitro scar model was successful in replicating hallmark features of hypertrophic scar such as excessive synthesis of fibrotic extracellular matrix, perturbed matrix homeostasis, contraction, diminished MMP synthesis. The study also highlighted significant involvement of TGF-β/SMAD and Wnt/β-catenin signaling pathways in in vitro scar formation." @default.
- W2783805672 created "2018-01-26" @default.
- W2783805672 creator A5017091864 @default.
- W2783805672 creator A5064654849 @default.
- W2783805672 date "2018-03-01" @default.
- W2783805672 modified "2023-10-11" @default.
- W2783805672 title "Regulation of fibrotic changes by the synergistic effects of cytokines, dimensionality and matrix: Towards the development of an in vitro human dermal hypertrophic scar model" @default.
- W2783805672 cites W1505584712 @default.
- W2783805672 cites W1588127651 @default.
- W2783805672 cites W1603490962 @default.
- W2783805672 cites W1663371441 @default.
- W2783805672 cites W1829106046 @default.
- W2783805672 cites W1878807841 @default.
- W2783805672 cites W1886472063 @default.
- W2783805672 cites W1964471240 @default.
- W2783805672 cites W1966174614 @default.
- W2783805672 cites W1966764796 @default.
- W2783805672 cites W1974041699 @default.
- W2783805672 cites W1978310574 @default.
- W2783805672 cites W1985442394 @default.
- W2783805672 cites W2000865288 @default.
- W2783805672 cites W2004386707 @default.
- W2783805672 cites W2011284586 @default.
- W2783805672 cites W2013537969 @default.
- W2783805672 cites W2016193552 @default.
- W2783805672 cites W2026632078 @default.
- W2783805672 cites W2027427234 @default.
- W2783805672 cites W2031512142 @default.
- W2783805672 cites W2039295429 @default.
- W2783805672 cites W2042667096 @default.
- W2783805672 cites W2042905766 @default.
- W2783805672 cites W2043314470 @default.
- W2783805672 cites W2043473655 @default.
- W2783805672 cites W2045678861 @default.
- W2783805672 cites W2051473609 @default.
- W2783805672 cites W2051696368 @default.
- W2783805672 cites W2052413295 @default.
- W2783805672 cites W2053688285 @default.
- W2783805672 cites W2055462243 @default.
- W2783805672 cites W2059114286 @default.
- W2783805672 cites W2061283489 @default.
- W2783805672 cites W2067286536 @default.
- W2783805672 cites W2068647128 @default.
- W2783805672 cites W2079292560 @default.
- W2783805672 cites W2080360768 @default.
- W2783805672 cites W2081541428 @default.
- W2783805672 cites W2082686603 @default.
- W2783805672 cites W2088392146 @default.
- W2783805672 cites W2088671938 @default.
- W2783805672 cites W2094976457 @default.
- W2783805672 cites W2096280264 @default.
- W2783805672 cites W2100098898 @default.
- W2783805672 cites W2104930356 @default.
- W2783805672 cites W2111179262 @default.
- W2783805672 cites W2125268957 @default.
- W2783805672 cites W2140923099 @default.
- W2783805672 cites W2154279806 @default.
- W2783805672 cites W2167784686 @default.
- W2783805672 cites W2184184250 @default.
- W2783805672 cites W2337844446 @default.
- W2783805672 cites W2504826727 @default.
- W2783805672 cites W2508927756 @default.
- W2783805672 cites W2615573702 @default.
- W2783805672 cites W4237769345 @default.
- W2783805672 doi "https://doi.org/10.1016/j.actbio.2018.01.002" @default.
- W2783805672 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29330036" @default.
- W2783805672 hasPublicationYear "2018" @default.
- W2783805672 type Work @default.
- W2783805672 sameAs 2783805672 @default.
- W2783805672 citedByCount "28" @default.
- W2783805672 countsByYear W27838056722018 @default.
- W2783805672 countsByYear W27838056722019 @default.
- W2783805672 countsByYear W27838056722020 @default.
- W2783805672 countsByYear W27838056722021 @default.
- W2783805672 countsByYear W27838056722022 @default.
- W2783805672 countsByYear W27838056722023 @default.
- W2783805672 crossrefType "journal-article" @default.
- W2783805672 hasAuthorship W2783805672A5017091864 @default.
- W2783805672 hasAuthorship W2783805672A5064654849 @default.
- W2783805672 hasConcept C137620995 @default.
- W2783805672 hasConcept C142724271 @default.
- W2783805672 hasConcept C164027704 @default.
- W2783805672 hasConcept C189165786 @default.
- W2783805672 hasConcept C202751555 @default.
- W2783805672 hasConcept C203014093 @default.
- W2783805672 hasConcept C207865475 @default.
- W2783805672 hasConcept C2776914184 @default.
- W2783805672 hasConcept C2777738151 @default.
- W2783805672 hasConcept C2778698245 @default.
- W2783805672 hasConcept C2780269544 @default.
- W2783805672 hasConcept C2780381497 @default.
- W2783805672 hasConcept C2780559512 @default.
- W2783805672 hasConcept C54355233 @default.
- W2783805672 hasConcept C62478195 @default.
- W2783805672 hasConcept C71924100 @default.
- W2783805672 hasConcept C86492073 @default.
- W2783805672 hasConcept C86803240 @default.
- W2783805672 hasConcept C95444343 @default.