Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783930892> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2783930892 endingPage "52" @default.
- W2783930892 startingPage "40" @default.
- W2783930892 abstract "Dialects of languages demonstrate dependency on both speaker and sound-unit (phone)-related information, which encompasses the problem of dialect identification (DID) under the domain of language identification (LID). The DID task is more complicated than conventional LID, and it has been established that conventional acoustic features like perceptual linear prediction (PLP) and mel frequency cepstral coefficient (MFCC) features-which carry only phone-unit-related information-are not sufficient to address the problem of DID. The authors explore raw log critical band energy (LCBE) information obtained from critical band analysis of speech signals, which effectively carries both speaker and phone-unit-related information. A nonlinear feature extractor using multilayer perceptron (MLP) is designed to model the critical band information. Further, a neuro-fuzzy classifier (NFC) is configured to classify feature vectors into different dialectal classes to discriminate between finer variations. The objective is to investigate perceptually oriented information obtained from all critical bands to distinguish dialectal speech and the applicability of NFC for such problems. Experimental results are shown in terms of classification accuracy of four dialects of Assamese language, mostly spoken in Northeast India. A few baseline systems are developed using PLP and MFCC features along with a Gaussian Mixture Model (GMM)-based classifier. Experimental results prove the strength of the MLP-based nonlinear mapping of critical band information for dialect discrimination compared to the PLP-based autoregressive approximation and MFCC-based cepstral domain version of critical band energy." @default.
- W2783930892 created "2018-01-26" @default.
- W2783930892 creator A5025157529 @default.
- W2783930892 creator A5074442858 @default.
- W2783930892 date "2018-01-01" @default.
- W2783930892 modified "2023-09-24" @default.
- W2783930892 title "Long-Term Critical Band Energy-Based Feature Set for Dialect Identification Using a Neuro-Fuzzy Approach" @default.
- W2783930892 cites W2120858182 @default.
- W2783930892 cites W2171923384 @default.
- W2783930892 cites W2221187835 @default.
- W2783930892 cites W2487912969 @default.
- W2783930892 cites W70126818 @default.
- W2783930892 doi "https://doi.org/10.1109/mis.2018.111144010" @default.
- W2783930892 hasPublicationYear "2018" @default.
- W2783930892 type Work @default.
- W2783930892 sameAs 2783930892 @default.
- W2783930892 citedByCount "2" @default.
- W2783930892 countsByYear W27839308922019 @default.
- W2783930892 crossrefType "journal-article" @default.
- W2783930892 hasAuthorship W2783930892A5025157529 @default.
- W2783930892 hasAuthorship W2783930892A5074442858 @default.
- W2783930892 hasConcept C151989614 @default.
- W2783930892 hasConcept C153180895 @default.
- W2783930892 hasConcept C154945302 @default.
- W2783930892 hasConcept C179717631 @default.
- W2783930892 hasConcept C23224414 @default.
- W2783930892 hasConcept C2778724510 @default.
- W2783930892 hasConcept C28490314 @default.
- W2783930892 hasConcept C41008148 @default.
- W2783930892 hasConcept C50644808 @default.
- W2783930892 hasConcept C52622490 @default.
- W2783930892 hasConcept C60908668 @default.
- W2783930892 hasConcept C61224824 @default.
- W2783930892 hasConcept C95623464 @default.
- W2783930892 hasConcept C96390635 @default.
- W2783930892 hasConceptScore W2783930892C151989614 @default.
- W2783930892 hasConceptScore W2783930892C153180895 @default.
- W2783930892 hasConceptScore W2783930892C154945302 @default.
- W2783930892 hasConceptScore W2783930892C179717631 @default.
- W2783930892 hasConceptScore W2783930892C23224414 @default.
- W2783930892 hasConceptScore W2783930892C2778724510 @default.
- W2783930892 hasConceptScore W2783930892C28490314 @default.
- W2783930892 hasConceptScore W2783930892C41008148 @default.
- W2783930892 hasConceptScore W2783930892C50644808 @default.
- W2783930892 hasConceptScore W2783930892C52622490 @default.
- W2783930892 hasConceptScore W2783930892C60908668 @default.
- W2783930892 hasConceptScore W2783930892C61224824 @default.
- W2783930892 hasConceptScore W2783930892C95623464 @default.
- W2783930892 hasConceptScore W2783930892C96390635 @default.
- W2783930892 hasIssue "1" @default.
- W2783930892 hasLocation W27839308921 @default.
- W2783930892 hasOpenAccess W2783930892 @default.
- W2783930892 hasPrimaryLocation W27839308921 @default.
- W2783930892 hasRelatedWork W1771058801 @default.
- W2783930892 hasRelatedWork W1825989297 @default.
- W2783930892 hasRelatedWork W1981297204 @default.
- W2783930892 hasRelatedWork W2014114590 @default.
- W2783930892 hasRelatedWork W2096528733 @default.
- W2783930892 hasRelatedWork W2160356362 @default.
- W2783930892 hasRelatedWork W2165240440 @default.
- W2783930892 hasRelatedWork W2365282522 @default.
- W2783930892 hasRelatedWork W2375198324 @default.
- W2783930892 hasRelatedWork W2548170873 @default.
- W2783930892 hasVolume "33" @default.
- W2783930892 isParatext "false" @default.
- W2783930892 isRetracted "false" @default.
- W2783930892 magId "2783930892" @default.
- W2783930892 workType "article" @default.