Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783975527> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2783975527 endingPage "29" @default.
- W2783975527 startingPage "29" @default.
- W2783975527 abstract "This paper presents an investigation into the feasibility of using deep learning methods for developing arbitrary full spatial resolution regression analysis of B-mode ultrasound images of human skeletal muscle. In this study, we focus on full spatial analysis of muscle fibre orientation, since there is an existing body of work with which to compare results. Previous attempts to automatically estimate fibre orientation from ultrasound are not adequate, often requiring manual region selection, feature engineering, providing low-resolution estimations (one angle per muscle) and deep muscles are often not attempted. We build upon our previous work in which automatic segmentation was used with plain convolutional neural network (CNN) and deep residual convolutional network (ResNet) architectures, to predict a low-resolution map of fibre orientation in extracted muscle regions. Here, we use deconvolutions and max-unpooling (DCNN) to regularise and improve predicted fibre orientation maps for the entire image, including deep muscles, removing the need for automatic segmentation and we compare our results with the CNN and ResNet, as well as a previously established feature engineering method, on the same task. Dynamic ultrasound images sequences of the calf muscles were acquired (25 Hz) from 8 healthy volunteers (4 male, ages: 25–36, median 30). A combination of expert annotation and interpolation/extrapolation provided labels of regional fibre orientation for each image. Neural networks (CNN, ResNet, DCNN) were then trained both with and without dropout using leave one out cross-validation. Our results demonstrated robust estimation of full spatial fibre orientation within approximately 6° error, which was an improvement on previous methods." @default.
- W2783975527 created "2018-01-26" @default.
- W2783975527 creator A5009412175 @default.
- W2783975527 creator A5011935162 @default.
- W2783975527 creator A5026098931 @default.
- W2783975527 creator A5038381734 @default.
- W2783975527 date "2018-01-29" @default.
- W2783975527 modified "2023-10-16" @default.
- W2783975527 title "Estimating Full Regional Skeletal Muscle Fibre Orientation from B-Mode Ultrasound Images Using Convolutional, Residual, and Deconvolutional Neural Networks" @default.
- W2783975527 cites W1127862795 @default.
- W2783975527 cites W1964859063 @default.
- W2783975527 cites W1973525597 @default.
- W2783975527 cites W1987087680 @default.
- W2783975527 cites W2006347227 @default.
- W2783975527 cites W2031595164 @default.
- W2783975527 cites W2032560731 @default.
- W2783975527 cites W2085190694 @default.
- W2783975527 cites W2093316730 @default.
- W2783975527 cites W2097186999 @default.
- W2783975527 cites W2108616409 @default.
- W2783975527 cites W2112080959 @default.
- W2783975527 cites W2125870821 @default.
- W2783975527 cites W2127325854 @default.
- W2783975527 cites W2130267346 @default.
- W2783975527 cites W2139737001 @default.
- W2783975527 cites W2161020449 @default.
- W2783975527 cites W2548537168 @default.
- W2783975527 cites W2566289208 @default.
- W2783975527 cites W284728061 @default.
- W2783975527 doi "https://doi.org/10.3390/jimaging4020029" @default.
- W2783975527 hasPublicationYear "2018" @default.
- W2783975527 type Work @default.
- W2783975527 sameAs 2783975527 @default.
- W2783975527 citedByCount "30" @default.
- W2783975527 countsByYear W27839755272018 @default.
- W2783975527 countsByYear W27839755272019 @default.
- W2783975527 countsByYear W27839755272020 @default.
- W2783975527 countsByYear W27839755272021 @default.
- W2783975527 countsByYear W27839755272022 @default.
- W2783975527 countsByYear W27839755272023 @default.
- W2783975527 crossrefType "journal-article" @default.
- W2783975527 hasAuthorship W2783975527A5009412175 @default.
- W2783975527 hasAuthorship W2783975527A5011935162 @default.
- W2783975527 hasAuthorship W2783975527A5026098931 @default.
- W2783975527 hasAuthorship W2783975527A5038381734 @default.
- W2783975527 hasBestOaLocation W27839755271 @default.
- W2783975527 hasConcept C108583219 @default.
- W2783975527 hasConcept C11413529 @default.
- W2783975527 hasConcept C138885662 @default.
- W2783975527 hasConcept C153180895 @default.
- W2783975527 hasConcept C154945302 @default.
- W2783975527 hasConcept C155512373 @default.
- W2783975527 hasConcept C16345878 @default.
- W2783975527 hasConcept C2524010 @default.
- W2783975527 hasConcept C2776401178 @default.
- W2783975527 hasConcept C31972630 @default.
- W2783975527 hasConcept C33923547 @default.
- W2783975527 hasConcept C41008148 @default.
- W2783975527 hasConcept C41895202 @default.
- W2783975527 hasConcept C81363708 @default.
- W2783975527 hasConcept C89600930 @default.
- W2783975527 hasConceptScore W2783975527C108583219 @default.
- W2783975527 hasConceptScore W2783975527C11413529 @default.
- W2783975527 hasConceptScore W2783975527C138885662 @default.
- W2783975527 hasConceptScore W2783975527C153180895 @default.
- W2783975527 hasConceptScore W2783975527C154945302 @default.
- W2783975527 hasConceptScore W2783975527C155512373 @default.
- W2783975527 hasConceptScore W2783975527C16345878 @default.
- W2783975527 hasConceptScore W2783975527C2524010 @default.
- W2783975527 hasConceptScore W2783975527C2776401178 @default.
- W2783975527 hasConceptScore W2783975527C31972630 @default.
- W2783975527 hasConceptScore W2783975527C33923547 @default.
- W2783975527 hasConceptScore W2783975527C41008148 @default.
- W2783975527 hasConceptScore W2783975527C41895202 @default.
- W2783975527 hasConceptScore W2783975527C81363708 @default.
- W2783975527 hasConceptScore W2783975527C89600930 @default.
- W2783975527 hasIssue "2" @default.
- W2783975527 hasLocation W27839755271 @default.
- W2783975527 hasLocation W27839755272 @default.
- W2783975527 hasOpenAccess W2783975527 @default.
- W2783975527 hasPrimaryLocation W27839755271 @default.
- W2783975527 hasRelatedWork W2560215812 @default.
- W2783975527 hasRelatedWork W3029198973 @default.
- W2783975527 hasRelatedWork W3133861977 @default.
- W2783975527 hasRelatedWork W3167935049 @default.
- W2783975527 hasRelatedWork W3193565141 @default.
- W2783975527 hasRelatedWork W3209312100 @default.
- W2783975527 hasRelatedWork W4226493464 @default.
- W2783975527 hasRelatedWork W4312417841 @default.
- W2783975527 hasRelatedWork W4315434538 @default.
- W2783975527 hasRelatedWork W2949601986 @default.
- W2783975527 hasVolume "4" @default.
- W2783975527 isParatext "false" @default.
- W2783975527 isRetracted "false" @default.
- W2783975527 magId "2783975527" @default.
- W2783975527 workType "article" @default.