Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783990992> ?p ?o ?g. }
- W2783990992 abstract "In fast-growing forests such as Eucalyptus plantations, the correct determination of stand productivity is essential to aid decision making processes and ensure the efficiency of the wood supply chain. In the past decade, advances in remote sensing and computational methods have yielded new tools, techniques, and technologies that have led to improvements in forest management and forest productivity assessments. Our aim was to estimate and map the basal area and volume of Eucalyptus stands through the integration of forest inventory, remote sensing, parametric, and nonparametric methods of spatial prediction. This study was conducted in 20 5-year-old clonal stands (362 ha) of Eucalyptus urophylla S.T.Blake x Eucalyptus camaldulensis Dehnh. The stands are located in the northwest region of Minas Gerais state, Brazil. Basal area and volume data were obtained from forest inventory operations carried out in the field. Spectral data were collected from a Landsat 5 TM satellite image, composed of spectral bands and vegetation indices. Multiple linear regression (MLR), random forest (RF), support vector machine (SVM), and artificial neural network (ANN) methods were used for basal area and volume estimation. Using ordinary kriging, we spatialised the residuals generated by the spatial prediction methods for the correction of trends in the estimates and more detailing of the spatial behaviour of basal area and volume. The ND54 index was the spectral variable that had the best correlation values with basal area (r = − 0.91) and volume (r = − 0.52) and was also the variable that most contributed to basal area and volume estimates by the MLR and RF methods. The RF algorithm presented smaller basal area and volume errors when compared to other machine learning algorithms and MLR. The addition of residual kriging in spatial prediction methods did not necessarily result in relative improvements in the estimations of these methods. Random forest was the best method of spatial prediction and mapping of basal area and volume in the study area. The combination of spatial prediction methods with residual kriging did not result in relative improvement of spatial prediction accuracy of basal area and volume in all methods assessed in this study, and there is not always a spatial dependency structure in the residuals of a spatial prediction method. The approaches used in this study provide a framework for integrating field and multispectral data, highlighting methods that greatly improve spatial prediction of basal area and volume estimation in Eucalyptus stands. This has potential to support fast growth plantation monitoring, offering options for a robust analysis of high-dimensional data." @default.
- W2783990992 created "2018-01-26" @default.
- W2783990992 creator A5011241274 @default.
- W2783990992 creator A5030428349 @default.
- W2783990992 creator A5057711572 @default.
- W2783990992 creator A5067671888 @default.
- W2783990992 creator A5077269385 @default.
- W2783990992 creator A5086085525 @default.
- W2783990992 date "2018-01-16" @default.
- W2783990992 modified "2023-09-27" @default.
- W2783990992 title "Spatial prediction of basal area and volume in Eucalyptus stands using Landsat TM data: an assessment of prediction methods" @default.
- W2783990992 cites W1177863458 @default.
- W2783990992 cites W180836830 @default.
- W2783990992 cites W1964217023 @default.
- W2783990992 cites W1964396812 @default.
- W2783990992 cites W1964789567 @default.
- W2783990992 cites W1974776350 @default.
- W2783990992 cites W1978642993 @default.
- W2783990992 cites W1983865151 @default.
- W2783990992 cites W1984081523 @default.
- W2783990992 cites W1984126227 @default.
- W2783990992 cites W1984396782 @default.
- W2783990992 cites W2000102737 @default.
- W2783990992 cites W2001046323 @default.
- W2783990992 cites W2004030886 @default.
- W2783990992 cites W2004553299 @default.
- W2783990992 cites W2005875006 @default.
- W2783990992 cites W2008374411 @default.
- W2783990992 cites W2017960296 @default.
- W2783990992 cites W2020520344 @default.
- W2783990992 cites W2020691931 @default.
- W2783990992 cites W2024110158 @default.
- W2783990992 cites W2024141630 @default.
- W2783990992 cites W2024306908 @default.
- W2783990992 cites W2033275656 @default.
- W2783990992 cites W2035222601 @default.
- W2783990992 cites W2035260309 @default.
- W2783990992 cites W2040099039 @default.
- W2783990992 cites W2053030987 @default.
- W2783990992 cites W2067823853 @default.
- W2783990992 cites W2070932004 @default.
- W2783990992 cites W2072360462 @default.
- W2783990992 cites W2079594423 @default.
- W2783990992 cites W2079598475 @default.
- W2783990992 cites W2085718984 @default.
- W2783990992 cites W2087463450 @default.
- W2783990992 cites W2098823605 @default.
- W2783990992 cites W2113410727 @default.
- W2783990992 cites W2119513445 @default.
- W2783990992 cites W2124837560 @default.
- W2783990992 cites W2137999206 @default.
- W2783990992 cites W2141813655 @default.
- W2783990992 cites W2146753997 @default.
- W2783990992 cites W2151456308 @default.
- W2783990992 cites W2153534477 @default.
- W2783990992 cites W2161522523 @default.
- W2783990992 cites W2171876032 @default.
- W2783990992 cites W2218364982 @default.
- W2783990992 cites W2221370058 @default.
- W2783990992 cites W2309209810 @default.
- W2783990992 cites W2343501884 @default.
- W2783990992 cites W2343696139 @default.
- W2783990992 cites W2345743725 @default.
- W2783990992 cites W2414908882 @default.
- W2783990992 cites W2460368378 @default.
- W2783990992 cites W2464006696 @default.
- W2783990992 cites W2488702363 @default.
- W2783990992 cites W2488801609 @default.
- W2783990992 cites W2520202114 @default.
- W2783990992 cites W2587010520 @default.
- W2783990992 cites W2911964244 @default.
- W2783990992 cites W299709162 @default.
- W2783990992 cites W4234306792 @default.
- W2783990992 cites W901507695 @default.
- W2783990992 doi "https://doi.org/10.1186/s40490-017-0108-0" @default.
- W2783990992 hasPublicationYear "2018" @default.
- W2783990992 type Work @default.
- W2783990992 sameAs 2783990992 @default.
- W2783990992 citedByCount "33" @default.
- W2783990992 countsByYear W27839909922018 @default.
- W2783990992 countsByYear W27839909922019 @default.
- W2783990992 countsByYear W27839909922020 @default.
- W2783990992 countsByYear W27839909922021 @default.
- W2783990992 countsByYear W27839909922022 @default.
- W2783990992 countsByYear W27839909922023 @default.
- W2783990992 crossrefType "journal-article" @default.
- W2783990992 hasAuthorship W2783990992A5011241274 @default.
- W2783990992 hasAuthorship W2783990992A5030428349 @default.
- W2783990992 hasAuthorship W2783990992A5057711572 @default.
- W2783990992 hasAuthorship W2783990992A5067671888 @default.
- W2783990992 hasAuthorship W2783990992A5077269385 @default.
- W2783990992 hasAuthorship W2783990992A5086085525 @default.
- W2783990992 hasBestOaLocation W27839909921 @default.
- W2783990992 hasConcept C105795698 @default.
- W2783990992 hasConcept C119857082 @default.
- W2783990992 hasConcept C147103442 @default.
- W2783990992 hasConcept C169258074 @default.
- W2783990992 hasConcept C18903297 @default.
- W2783990992 hasConcept C205649164 @default.
- W2783990992 hasConcept C2778102629 @default.