Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784037310> ?p ?o ?g. }
- W2784037310 endingPage "318.e5" @default.
- W2784037310 startingPage "311" @default.
- W2784037310 abstract "Plants coordinate their growth and development with the environment through integration of circadian clock and photosensory pathways. In Arabidopsis thaliana, rhythmic hypocotyl elongation in short days (SD) is enhanced at dawn by the basic-helix-loop-helix (bHLH) transcription factors PHYTOCHROME-INTERACTING FACTORS (PIFs) directly inducing expression of growth-related genes [1Niwa Y. Yamashino T. Mizuno T. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana.Plant Cell Physiol. 2009; 50: 838-854Crossref PubMed Scopus (156) Google Scholar, 2Nozue K. Covington M.F. Duek P.D. Lorrain S. Fankhauser C. Harmer S.L. Maloof J.N. Rhythmic growth explained by coincidence between internal and external cues.Nature. 2007; 448: 358-361Crossref PubMed Scopus (510) Google Scholar, 3Nomoto Y. Kubozono S. Yamashino T. Nakamichi N. Mizuno T. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.Plant Cell Physiol. 2012; 53: 1950-1964Crossref PubMed Scopus (83) Google Scholar, 4Martín G. Soy J. Monte E. Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes.Front. Plant Sci. 2016; 7: 962Crossref PubMed Scopus (6) Google Scholar, 5Soy J. Leivar P. González-Schain N. Martín G. Diaz C. Sentandreu M. Al-Sady B. Quail P.H. Monte E. Molecular convergence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters.Proc. Natl. Acad. Sci. USA. 2016; 113: 4870-4875Crossref PubMed Scopus (92) Google Scholar, 6Nozue K. Harmer S.L. Maloof J.N. Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis.Plant Physiol. 2011; 156: 357-372Crossref PubMed Scopus (112) Google Scholar]. PIFs accumulate progressively during the night and are targeted for degradation by active phytochromes in the light, when growth is reduced. Although PIF proteins are also detected during the day hours [7Bernardo-García S. de Lucas M. Martínez C. Espinosa-Ruiz A. Davière J.-M. Prat S. BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth.Genes Dev. 2014; 28: 1681-1694Crossref PubMed Scopus (147) Google Scholar, 8Soy J. Leivar P. González-Schain N. Sentandreu M. Prat S. Quail P.H. Monte E. Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis.Plant J. 2012; 71: 390-401PubMed Google Scholar, 9Monte E. Tepperman J.M. Al-Sady B. Kaczorowski K.A. Alonso J.M. Ecker J.R. Li X. Zhang Y. Quail P.H. The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development.Proc. Natl. Acad. Sci. USA. 2004; 101: 16091-16098Crossref PubMed Scopus (240) Google Scholar, 10Yamashino T. Nomoto Y. Lorrain S. Miyachi M. Ito S. Nakamichi N. Fankhauser C. Mizuno T. Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana.Plant Signal. Behav. 2013; 8: e23390Crossref PubMed Scopus (50) Google Scholar], their growth-promoting activity is inhibited through unknown mechanisms. Recently, the core clock components and transcriptional repressors PSEUDO-RESPONSE REGULATORS PRR9/7/5 [11Nakamichi N. Kiba T. Henriques R. Mizuno T. Chua N.-H. Sakakibara H. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock.Plant Cell. 2010; 22: 594-605Crossref PubMed Scopus (388) Google Scholar, 12Farré E.M. Liu T. The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks.Curr. Opin. Plant Biol. 2013; 16: 621-629Crossref PubMed Scopus (65) Google Scholar], negative regulators of hypocotyl elongation [13Nakamichi N. Kita M. Ito S. Yamashino T. Mizuno T. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana.Plant Cell Physiol. 2005; 46: 686-698Crossref PubMed Scopus (248) Google Scholar, 14Kaczorowski K.A. Quail P.H. Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock.Plant Cell. 2003; 15: 2654-2665Crossref PubMed Scopus (95) Google Scholar], were described to associate to G boxes [15Liu T.L. Newton L. Liu M.-J. Shiu S.-H. Farré E.M. A G-box-like motif is necessary for transcriptional regulation by circadian pseudo-response regulators in Arabidopsis.Plant Physiol. 2016; 170: 528-539Crossref PubMed Scopus (84) Google Scholar], the DNA motifs recognized by the PIFs [16Pfeiffer A. Shi H. Tepperman J.M. Zhang Y. Quail P.H. Combinatorial complexity in a transcriptionally centered signaling hub in Arabidopsis.Mol. Plant. 2014; 7: 1598-1618Abstract Full Text Full Text PDF PubMed Scopus (116) Google Scholar, 17Martínez-García J.F. Huq E. Quail P.H. Direct targeting of light signals to a promoter element-bound transcription factor.Science. 2000; 288: 859-863Crossref PubMed Scopus (525) Google Scholar], suggesting that PRR and PIF function might converge antagonistically to regulate growth. Here we report that PRR9/7/5 and PIFs physically interact and bind to the same promoter region of pre-dawn-phased, growth-related genes, and we identify the transcription factor CDF5 [18Fornara F. de Montaigu A. Sánchez-Villarreal A. Takahashi Y. Ver Loren van Themaat E. Huettel B. Davis S.J. Coupland G. The GI-CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering.Plant J. 2015; 81: 695-706Crossref PubMed Scopus (65) Google Scholar, 19Fornara F. Panigrahi K.C.S. Gissot L. Sauerbrunn N. Rühl M. Jarillo J.A. Coupland G. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response.Dev. Cell. 2009; 17: 75-86Abstract Full Text Full Text PDF PubMed Scopus (412) Google Scholar] as target of this interplay. In SD, CDF5 expression is sequentially repressed from morning to dusk by PRRs and induced pre-dawn by PIFs. Consequently, CDF5 accumulates specifically at dawn, when it induces cell elongation. Our findings provide a framework for recent TIMING OF CAB EXPRESSION 1 (TOC1/PRR1) data [5Soy J. Leivar P. González-Schain N. Martín G. Diaz C. Sentandreu M. Al-Sady B. Quail P.H. Monte E. Molecular convergence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters.Proc. Natl. Acad. Sci. USA. 2016; 113: 4870-4875Crossref PubMed Scopus (92) Google Scholar, 20Zhu J.-Y. Oh E. Wang T. Wang Z.-Y. TOC1-PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis.Nat. Commun. 2016; 7: 13692Crossref PubMed Scopus (123) Google Scholar] and reveal that the long described circadian morning-to-midnight waves of the PRR transcriptional repressors (PRR9, PRR7, PRR5, and TOC1) [21Matsushika A. Makino S. Kojima M. Mizuno T. Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock.Plant Cell Physiol. 2000; 41: 1002-1012Crossref PubMed Scopus (311) Google Scholar] jointly gate PIF activity to dawn to prevent overgrowth through sequential regulation of common PIF-PRR target genes such as CDF5." @default.
- W2784037310 created "2018-01-26" @default.
- W2784037310 creator A5002208285 @default.
- W2784037310 creator A5004533324 @default.
- W2784037310 creator A5005562085 @default.
- W2784037310 creator A5007885589 @default.
- W2784037310 creator A5017034081 @default.
- W2784037310 creator A5019257181 @default.
- W2784037310 creator A5022174199 @default.
- W2784037310 creator A5025865254 @default.
- W2784037310 creator A5037424740 @default.
- W2784037310 creator A5050116901 @default.
- W2784037310 creator A5072905733 @default.
- W2784037310 creator A5079994763 @default.
- W2784037310 creator A5085900537 @default.
- W2784037310 date "2018-01-01" @default.
- W2784037310 modified "2023-10-16" @default.
- W2784037310 title "Circadian Waves of Transcriptional Repression Shape PIF-Regulated Photoperiod-Responsive Growth in Arabidopsis" @default.
- W2784037310 cites W1527245770 @default.
- W2784037310 cites W1550861155 @default.
- W2784037310 cites W1968610642 @default.
- W2784037310 cites W1968801962 @default.
- W2784037310 cites W1972113569 @default.
- W2784037310 cites W1975378899 @default.
- W2784037310 cites W1979699650 @default.
- W2784037310 cites W1980205405 @default.
- W2784037310 cites W1981772822 @default.
- W2784037310 cites W1982981899 @default.
- W2784037310 cites W1988832105 @default.
- W2784037310 cites W2000009089 @default.
- W2784037310 cites W2016453151 @default.
- W2784037310 cites W2021609583 @default.
- W2784037310 cites W2025977362 @default.
- W2784037310 cites W2055531437 @default.
- W2784037310 cites W2059981497 @default.
- W2784037310 cites W2069812226 @default.
- W2784037310 cites W2072695931 @default.
- W2784037310 cites W2085055961 @default.
- W2784037310 cites W2097795961 @default.
- W2784037310 cites W2099795802 @default.
- W2784037310 cites W2108058173 @default.
- W2784037310 cites W2114587183 @default.
- W2784037310 cites W2118647549 @default.
- W2784037310 cites W2118874817 @default.
- W2784037310 cites W2119313854 @default.
- W2784037310 cites W2121091648 @default.
- W2784037310 cites W2122881302 @default.
- W2784037310 cites W2123470222 @default.
- W2784037310 cites W2130639396 @default.
- W2784037310 cites W2130864801 @default.
- W2784037310 cites W2137407126 @default.
- W2784037310 cites W2139050241 @default.
- W2784037310 cites W2140949512 @default.
- W2784037310 cites W2152710395 @default.
- W2784037310 cites W2159868152 @default.
- W2784037310 cites W2164655883 @default.
- W2784037310 cites W2169823881 @default.
- W2784037310 cites W2199998454 @default.
- W2784037310 cites W2292100077 @default.
- W2784037310 cites W2338407357 @default.
- W2784037310 cites W2345751169 @default.
- W2784037310 cites W2462615167 @default.
- W2784037310 cites W2565878906 @default.
- W2784037310 cites W2594133253 @default.
- W2784037310 doi "https://doi.org/10.1016/j.cub.2017.12.021" @default.
- W2784037310 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29337078" @default.
- W2784037310 hasPublicationYear "2018" @default.
- W2784037310 type Work @default.
- W2784037310 sameAs 2784037310 @default.
- W2784037310 citedByCount "82" @default.
- W2784037310 countsByYear W27840373102018 @default.
- W2784037310 countsByYear W27840373102019 @default.
- W2784037310 countsByYear W27840373102020 @default.
- W2784037310 countsByYear W27840373102021 @default.
- W2784037310 countsByYear W27840373102022 @default.
- W2784037310 countsByYear W27840373102023 @default.
- W2784037310 crossrefType "journal-article" @default.
- W2784037310 hasAuthorship W2784037310A5002208285 @default.
- W2784037310 hasAuthorship W2784037310A5004533324 @default.
- W2784037310 hasAuthorship W2784037310A5005562085 @default.
- W2784037310 hasAuthorship W2784037310A5007885589 @default.
- W2784037310 hasAuthorship W2784037310A5017034081 @default.
- W2784037310 hasAuthorship W2784037310A5019257181 @default.
- W2784037310 hasAuthorship W2784037310A5022174199 @default.
- W2784037310 hasAuthorship W2784037310A5025865254 @default.
- W2784037310 hasAuthorship W2784037310A5037424740 @default.
- W2784037310 hasAuthorship W2784037310A5050116901 @default.
- W2784037310 hasAuthorship W2784037310A5072905733 @default.
- W2784037310 hasAuthorship W2784037310A5079994763 @default.
- W2784037310 hasAuthorship W2784037310A5085900537 @default.
- W2784037310 hasBestOaLocation W27840373101 @default.
- W2784037310 hasConcept C104317684 @default.
- W2784037310 hasConcept C121446783 @default.
- W2784037310 hasConcept C143065580 @default.
- W2784037310 hasConcept C150194340 @default.
- W2784037310 hasConcept C169760540 @default.
- W2784037310 hasConcept C186310378 @default.
- W2784037310 hasConcept C2779491563 @default.