Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784046638> ?p ?o ?g. }
- W2784046638 endingPage "448" @default.
- W2784046638 startingPage "428" @default.
- W2784046638 abstract "Summary Data-acquisition programs, such as surveillance and pilots, play an important role in minimizing subsurface risks and improving decision quality for reservoir management. For design optimization and investment justification of these programs, it is crucial to be able to quantify the expected uncertainty reduction and the value of information (VOI) attainable from a given design. This problem is challenging because the data from the acquisition program are uncertain at the time of the analysis. In this paper, a method called ensemble-variance analysis (EVA) is proposed. Derived from a multivariate Gaussian assumption between the observation data and the objective function, the EVA method quantifies the expected uncertainty reduction from covariance information that is estimated from an ensemble of simulations. The result of EVA can then be used with a decision tree to quantify the VOI of a given data-acquisition program. The proposed method has several novel features compared with existing methods. First, the EVA method directly considers the data/objective-function relationship. Therefore, it can handle nonlinear forward models and an arbitrary number of parameters. Second, for cases when the multivariate Gaussian assumption between the data and objective function does not hold, the EVA method still provides a lower bound on expected uncertainty reduction, which can be useful in providing a conservative estimate of the surveillance/pilot performance. Finally, EVA also provides an estimate of the shift in the mean of the objective-function distribution, which is crucial for VOI calculation. In this paper, the EVA work flow for expected-uncertainty-reduction quantification is described. The result from EVA is benchmarked with recently proposed rigorous sampling methods, and the capacity of the method for VOI quantification is demonstrated for a pilot-analysis problem using a field-scale reservoir model." @default.
- W2784046638 created "2018-01-26" @default.
- W2784046638 creator A5007610482 @default.
- W2784046638 creator A5012374007 @default.
- W2784046638 creator A5021670444 @default.
- W2784046638 creator A5026022017 @default.
- W2784046638 creator A5076237055 @default.
- W2784046638 creator A5088452660 @default.
- W2784046638 creator A5057608633 @default.
- W2784046638 date "2018-01-09" @default.
- W2784046638 modified "2023-10-18" @default.
- W2784046638 title "Quantifying Expected Uncertainty Reduction and Value of Information Using Ensemble-Variance Analysis" @default.
- W2784046638 cites W1972675016 @default.
- W2784046638 cites W1978501306 @default.
- W2784046638 cites W1986428742 @default.
- W2784046638 cites W2033887108 @default.
- W2784046638 cites W2053154595 @default.
- W2784046638 cites W2320331466 @default.
- W2784046638 cites W2511502484 @default.
- W2784046638 cites W2516819201 @default.
- W2784046638 cites W2586142099 @default.
- W2784046638 cites W2604298152 @default.
- W2784046638 cites W4211007185 @default.
- W2784046638 cites W4232359393 @default.
- W2784046638 cites W4252707658 @default.
- W2784046638 doi "https://doi.org/10.2118/182609-pa" @default.
- W2784046638 hasPublicationYear "2018" @default.
- W2784046638 type Work @default.
- W2784046638 sameAs 2784046638 @default.
- W2784046638 citedByCount "21" @default.
- W2784046638 countsByYear W27840466382018 @default.
- W2784046638 countsByYear W27840466382019 @default.
- W2784046638 countsByYear W27840466382020 @default.
- W2784046638 countsByYear W27840466382021 @default.
- W2784046638 countsByYear W27840466382022 @default.
- W2784046638 countsByYear W27840466382023 @default.
- W2784046638 crossrefType "journal-article" @default.
- W2784046638 hasAuthorship W2784046638A5007610482 @default.
- W2784046638 hasAuthorship W2784046638A5012374007 @default.
- W2784046638 hasAuthorship W2784046638A5021670444 @default.
- W2784046638 hasAuthorship W2784046638A5026022017 @default.
- W2784046638 hasAuthorship W2784046638A5057608633 @default.
- W2784046638 hasAuthorship W2784046638A5076237055 @default.
- W2784046638 hasAuthorship W2784046638A5088452660 @default.
- W2784046638 hasConcept C105795698 @default.
- W2784046638 hasConcept C111335779 @default.
- W2784046638 hasConcept C119857082 @default.
- W2784046638 hasConcept C121332964 @default.
- W2784046638 hasConcept C121955636 @default.
- W2784046638 hasConcept C124101348 @default.
- W2784046638 hasConcept C126255220 @default.
- W2784046638 hasConcept C14036430 @default.
- W2784046638 hasConcept C144024400 @default.
- W2784046638 hasConcept C144133560 @default.
- W2784046638 hasConcept C153914771 @default.
- W2784046638 hasConcept C161584116 @default.
- W2784046638 hasConcept C163716315 @default.
- W2784046638 hasConcept C177384507 @default.
- W2784046638 hasConcept C178650346 @default.
- W2784046638 hasConcept C196083921 @default.
- W2784046638 hasConcept C2524010 @default.
- W2784046638 hasConcept C2778865114 @default.
- W2784046638 hasConcept C32230216 @default.
- W2784046638 hasConcept C33923547 @default.
- W2784046638 hasConcept C41008148 @default.
- W2784046638 hasConcept C46312422 @default.
- W2784046638 hasConcept C62520636 @default.
- W2784046638 hasConcept C78458016 @default.
- W2784046638 hasConcept C86803240 @default.
- W2784046638 hasConcept C94361409 @default.
- W2784046638 hasConceptScore W2784046638C105795698 @default.
- W2784046638 hasConceptScore W2784046638C111335779 @default.
- W2784046638 hasConceptScore W2784046638C119857082 @default.
- W2784046638 hasConceptScore W2784046638C121332964 @default.
- W2784046638 hasConceptScore W2784046638C121955636 @default.
- W2784046638 hasConceptScore W2784046638C124101348 @default.
- W2784046638 hasConceptScore W2784046638C126255220 @default.
- W2784046638 hasConceptScore W2784046638C14036430 @default.
- W2784046638 hasConceptScore W2784046638C144024400 @default.
- W2784046638 hasConceptScore W2784046638C144133560 @default.
- W2784046638 hasConceptScore W2784046638C153914771 @default.
- W2784046638 hasConceptScore W2784046638C161584116 @default.
- W2784046638 hasConceptScore W2784046638C163716315 @default.
- W2784046638 hasConceptScore W2784046638C177384507 @default.
- W2784046638 hasConceptScore W2784046638C178650346 @default.
- W2784046638 hasConceptScore W2784046638C196083921 @default.
- W2784046638 hasConceptScore W2784046638C2524010 @default.
- W2784046638 hasConceptScore W2784046638C2778865114 @default.
- W2784046638 hasConceptScore W2784046638C32230216 @default.
- W2784046638 hasConceptScore W2784046638C33923547 @default.
- W2784046638 hasConceptScore W2784046638C41008148 @default.
- W2784046638 hasConceptScore W2784046638C46312422 @default.
- W2784046638 hasConceptScore W2784046638C62520636 @default.
- W2784046638 hasConceptScore W2784046638C78458016 @default.
- W2784046638 hasConceptScore W2784046638C86803240 @default.
- W2784046638 hasConceptScore W2784046638C94361409 @default.
- W2784046638 hasIssue "02" @default.
- W2784046638 hasLocation W27840466381 @default.