Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784047594> ?p ?o ?g. }
- W2784047594 endingPage "393" @default.
- W2784047594 startingPage "385" @default.
- W2784047594 abstract "Photovoltaic devices, electrochemical cells, catalysis processes, light emitting diodes, scanning tunneling microscopes, molecular electronics, and related devices have one thing in common: open quantum systems where energy and matter are not conserved. Traditionally quantum chemistry is confined to isolated and closed systems, while quantum dissipation theory studies open quantum systems. The key quantity in quantum dissipation theory is the reduced system density matrix. As the reduced system density matrix is an O(M! × M!) matrix, where M is the number of the particles of the system of interest, quantum dissipation theory can only be employed to simulate systems of a few particles or degrees of freedom. It is thus important to combine quantum chemistry and quantum dissipation theory so that realistic open quantum systems can be simulated from first-principles. We have developed a first-principles method to simulate the dynamics of open electronic systems, the time-dependent density functional theory for open systems (TDDFT-OS). Instead of the reduced system density matrix, the key quantity is the reduced single-electron density matrix, which is an N × N matrix where N is the number of the atomic bases of the system of interest. As the dimension of the key quantity is drastically reduced, the TDDFT-OS can thus be used to simulate the dynamics of realistic open electronic systems and efficient numerical algorithms have been developed. As an application, we apply the method to study how quantum interference develops in a molecular transistor in time domain. We include electron-phonon interaction in our simulation and show that quantum interference in the given system is robust against nuclear vibration not only in the steady state but also in the transient dynamics. As another application, by combining TDDFT-OS with Ehrenfest dynamics, we study current-induced dissociation of water molecules under scanning tunneling microscopy and follow its time dependent dynamics. Given the rapid development in ultrafast experiments with atomic resolution in recent years, time dependent simulation of open electronic systems will be useful to gain insight and understanding of such experiments. This Account will mainly focus on the practical aspects of the TDDFT-OS method, describing the numerical implementation and demonstrating the method with applications." @default.
- W2784047594 created "2018-01-26" @default.
- W2784047594 creator A5005096281 @default.
- W2784047594 creator A5032664810 @default.
- W2784047594 creator A5074341326 @default.
- W2784047594 date "2018-01-19" @default.
- W2784047594 modified "2023-10-13" @default.
- W2784047594 title "Time-Dependent Density Functional Theory for Open Systems and Its Applications" @default.
- W2784047594 cites W1964357583 @default.
- W2784047594 cites W1967960518 @default.
- W2784047594 cites W1968272864 @default.
- W2784047594 cites W1968844423 @default.
- W2784047594 cites W1972133162 @default.
- W2784047594 cites W1983802311 @default.
- W2784047594 cites W1984568704 @default.
- W2784047594 cites W1989034096 @default.
- W2784047594 cites W1989988474 @default.
- W2784047594 cites W1991958418 @default.
- W2784047594 cites W1998627624 @default.
- W2784047594 cites W2002340347 @default.
- W2784047594 cites W2011327487 @default.
- W2784047594 cites W2015683881 @default.
- W2784047594 cites W2030976617 @default.
- W2784047594 cites W2035120809 @default.
- W2784047594 cites W2037200286 @default.
- W2784047594 cites W2038293483 @default.
- W2784047594 cites W2040235982 @default.
- W2784047594 cites W2049447539 @default.
- W2784047594 cites W2058398316 @default.
- W2784047594 cites W2061683726 @default.
- W2784047594 cites W2067028739 @default.
- W2784047594 cites W2069016781 @default.
- W2784047594 cites W2078378493 @default.
- W2784047594 cites W2088406793 @default.
- W2784047594 cites W2093537274 @default.
- W2784047594 cites W2098521864 @default.
- W2784047594 cites W2102071533 @default.
- W2784047594 cites W2106635917 @default.
- W2784047594 cites W2111275210 @default.
- W2784047594 cites W2115578747 @default.
- W2784047594 cites W2119773255 @default.
- W2784047594 cites W2125039271 @default.
- W2784047594 cites W2148017697 @default.
- W2784047594 cites W2149419916 @default.
- W2784047594 cites W2149732741 @default.
- W2784047594 cites W2154175093 @default.
- W2784047594 cites W2162374753 @default.
- W2784047594 cites W2169084310 @default.
- W2784047594 cites W2171374277 @default.
- W2784047594 cites W2230728100 @default.
- W2784047594 cites W2294453824 @default.
- W2784047594 cites W2557082809 @default.
- W2784047594 cites W2562280960 @default.
- W2784047594 cites W2746718465 @default.
- W2784047594 cites W2761851732 @default.
- W2784047594 cites W3100626715 @default.
- W2784047594 cites W3101528046 @default.
- W2784047594 cites W3101744843 @default.
- W2784047594 cites W4212834654 @default.
- W2784047594 cites W4235028801 @default.
- W2784047594 cites W4248710233 @default.
- W2784047594 doi "https://doi.org/10.1021/acs.accounts.7b00382" @default.
- W2784047594 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29350516" @default.
- W2784047594 hasPublicationYear "2018" @default.
- W2784047594 type Work @default.
- W2784047594 sameAs 2784047594 @default.
- W2784047594 citedByCount "15" @default.
- W2784047594 countsByYear W27840475942018 @default.
- W2784047594 countsByYear W27840475942019 @default.
- W2784047594 countsByYear W27840475942021 @default.
- W2784047594 countsByYear W27840475942022 @default.
- W2784047594 countsByYear W27840475942023 @default.
- W2784047594 crossrefType "journal-article" @default.
- W2784047594 hasAuthorship W2784047594A5005096281 @default.
- W2784047594 hasAuthorship W2784047594A5032664810 @default.
- W2784047594 hasAuthorship W2784047594A5074341326 @default.
- W2784047594 hasConcept C121332964 @default.
- W2784047594 hasConcept C121864883 @default.
- W2784047594 hasConcept C135402231 @default.
- W2784047594 hasConcept C152365726 @default.
- W2784047594 hasConcept C161166931 @default.
- W2784047594 hasConcept C163677043 @default.
- W2784047594 hasConcept C190474826 @default.
- W2784047594 hasConcept C199360897 @default.
- W2784047594 hasConcept C20853536 @default.
- W2784047594 hasConcept C2777904410 @default.
- W2784047594 hasConcept C2778926657 @default.
- W2784047594 hasConcept C41008148 @default.
- W2784047594 hasConcept C56911000 @default.
- W2784047594 hasConcept C62520636 @default.
- W2784047594 hasConcept C84114770 @default.
- W2784047594 hasConcept C92915299 @default.
- W2784047594 hasConceptScore W2784047594C121332964 @default.
- W2784047594 hasConceptScore W2784047594C121864883 @default.
- W2784047594 hasConceptScore W2784047594C135402231 @default.
- W2784047594 hasConceptScore W2784047594C152365726 @default.
- W2784047594 hasConceptScore W2784047594C161166931 @default.
- W2784047594 hasConceptScore W2784047594C163677043 @default.