Matches in SemOpenAlex for { <https://semopenalex.org/work/W2784093476> ?p ?o ?g. }
- W2784093476 endingPage "671" @default.
- W2784093476 startingPage "660" @default.
- W2784093476 abstract "Abstract Rutile is the most common and stable form of TiO2 that ubiquitously existing on Earth and other terrestrial planets like Mars. Semiconducting mineral such as rutile-based photoredox reactions have been considered to play important roles in geological times. However, due to the inherent complexity in chemistry, the precision determination on band structure of natural rutile and the theoretical explanation on its solar-driven photochemistry have been hardly seen yet. Considering the multiple minor and trace elements in natural rutile, we firstly obtained the single-crystal crystallography, mineralogical composition and defects characteristic of the rutile sample by using both powder and single crystal X-ray diffraction, electron microprobe analysis and X-ray photoelectron spectroscopy. Then, the band gap was accurately determined by synchrotron-based O K-edge X-ray absorption and emission spectra, which was firstly applied to natural rutile due to its robustness on compositions and defects. The absolute band edges of the rutile sample was calculated by considering the electronegativity of the atoms, band gap and point of zero charge. Besides, after detecting the defect energy levels by photoluminescence spectra, we drew the schematic band structure of natural rutile. The band gap (2.7 eV) of natural rutile was narrower than that of synthetic rutile (3.0 eV), and the conduction and valence band edges of natural rutile at pH = pHPZC were determined to be −0.04 V and 2.66 V (vs. NHE), respectively. The defect energy levels located at nearly the middle position of the forbidden band. Further, we used theoretical calculations to verify the isomorphous substitution of Fe and V for Ti gave rise to the distortion of TiO6 octahedron and created vacancy defects in natural rutile. Based on density functional theory, the narrowed band gap was interpreted to the contribution of Fe-3d and V-3d orbits, and the defect energy state was formed by hybridization of O-2p and Fe/V/Ti-3d orbits in the forbidden band. Therefore, excitons can be created under visible light. The conduction band electrons and valence band holes enabled the photoreduction of CO2 to organic molecules (e.g., acetic acid and CH4) and photooxidative generation of oxidants (e.g., OH, O2 and ClO4−) via rutile photocatalysis, respectively. This study underlies the capability of natural semiconducting minerals in solar energy utilization and the implications of their photocatalysis in both the origin of primitive life on Earth and formation of modern environments on Mars." @default.
- W2784093476 created "2018-01-26" @default.
- W2784093476 creator A5017042522 @default.
- W2784093476 creator A5023121798 @default.
- W2784093476 creator A5041685436 @default.
- W2784093476 creator A5043682664 @default.
- W2784093476 creator A5044006938 @default.
- W2784093476 creator A5046460562 @default.
- W2784093476 creator A5080149086 @default.
- W2784093476 creator A5080690484 @default.
- W2784093476 date "2018-05-01" @default.
- W2784093476 modified "2023-10-01" @default.
- W2784093476 title "Absolute band structure determination on naturally occurring rutile with complex chemistry: Implications for mineral photocatalysis on both Earth and Mars" @default.
- W2784093476 cites W1576335984 @default.
- W2784093476 cites W1661939691 @default.
- W2784093476 cites W1780121215 @default.
- W2784093476 cites W1906682345 @default.
- W2784093476 cites W1965793782 @default.
- W2784093476 cites W1967344963 @default.
- W2784093476 cites W1973012528 @default.
- W2784093476 cites W1975628207 @default.
- W2784093476 cites W1976129781 @default.
- W2784093476 cites W1976449309 @default.
- W2784093476 cites W1979362764 @default.
- W2784093476 cites W1979804898 @default.
- W2784093476 cites W1980176813 @default.
- W2784093476 cites W1980216394 @default.
- W2784093476 cites W1981368803 @default.
- W2784093476 cites W1981765392 @default.
- W2784093476 cites W1982898366 @default.
- W2784093476 cites W1983773748 @default.
- W2784093476 cites W1986252415 @default.
- W2784093476 cites W1988612341 @default.
- W2784093476 cites W1991613836 @default.
- W2784093476 cites W1995072795 @default.
- W2784093476 cites W1999528796 @default.
- W2784093476 cites W2001413913 @default.
- W2784093476 cites W2001570566 @default.
- W2784093476 cites W2003120420 @default.
- W2784093476 cites W2003533963 @default.
- W2784093476 cites W2004464572 @default.
- W2784093476 cites W2004713867 @default.
- W2784093476 cites W2012676960 @default.
- W2784093476 cites W2013656542 @default.
- W2784093476 cites W2020433477 @default.
- W2784093476 cites W2022725907 @default.
- W2784093476 cites W2027070818 @default.
- W2784093476 cites W2027336822 @default.
- W2784093476 cites W2027581929 @default.
- W2784093476 cites W2028240530 @default.
- W2784093476 cites W2033807259 @default.
- W2784093476 cites W2034009946 @default.
- W2784093476 cites W2035260403 @default.
- W2784093476 cites W2036113194 @default.
- W2784093476 cites W2037336460 @default.
- W2784093476 cites W2041080687 @default.
- W2784093476 cites W2041328534 @default.
- W2784093476 cites W2042492216 @default.
- W2784093476 cites W2042645287 @default.
- W2784093476 cites W2044375864 @default.
- W2784093476 cites W2044856223 @default.
- W2784093476 cites W2047803449 @default.
- W2784093476 cites W2051181249 @default.
- W2784093476 cites W2054249920 @default.
- W2784093476 cites W2062706176 @default.
- W2784093476 cites W2076876085 @default.
- W2784093476 cites W2079620589 @default.
- W2784093476 cites W2082319765 @default.
- W2784093476 cites W2087585288 @default.
- W2784093476 cites W2088546271 @default.
- W2784093476 cites W2089734699 @default.
- W2784093476 cites W2090959926 @default.
- W2784093476 cites W2093576281 @default.
- W2784093476 cites W2093963384 @default.
- W2784093476 cites W2098537197 @default.
- W2784093476 cites W2134228085 @default.
- W2784093476 cites W2138405719 @default.
- W2784093476 cites W2158333088 @default.
- W2784093476 cites W2160012592 @default.
- W2784093476 cites W2255195701 @default.
- W2784093476 cites W2266872834 @default.
- W2784093476 cites W2320258644 @default.
- W2784093476 cites W2324735843 @default.
- W2784093476 cites W2329441048 @default.
- W2784093476 cites W2332848244 @default.
- W2784093476 cites W2393475881 @default.
- W2784093476 cites W2472931104 @default.
- W2784093476 cites W2560666141 @default.
- W2784093476 cites W2587696964 @default.
- W2784093476 cites W3106231797 @default.
- W2784093476 cites W3211985345 @default.
- W2784093476 doi "https://doi.org/10.1016/j.apsusc.2017.12.195" @default.
- W2784093476 hasPublicationYear "2018" @default.
- W2784093476 type Work @default.
- W2784093476 sameAs 2784093476 @default.
- W2784093476 citedByCount "12" @default.
- W2784093476 countsByYear W27840934762018 @default.
- W2784093476 countsByYear W27840934762019 @default.